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Abstract. Semantic Web technologies offer a promising mechanism for
the representation and integration of thousands of biomedical databases.
Many of these databases provide cross-references to other data sources,
but they are generally incomplete and error-prone. In this paper, we con-
duct an empirical link analysis of the life science Linked Data, obtained
from the Bio2RDF project. Three different link graphs for datasets, enti-
ties and terms are characterized using degree distribution, connectivity,
and clustering metrics, and their correlation is measured as well. Further-
more, we analyze the symmetry and transitivity of entity links to build a
benchmark and preliminarily evaluate several entity matching methods.
Our findings indicate that the life science data network can help identify
hidden links, can be used to validate links, and may offer the mechanism
to integrate a wider set of resources for biomedical knowledge discovery.
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1 Introduction

Semantic Web (SW) technologies such as Linked Data provide a salient mecha-
nism by which human and machine can navigate across large and heterogeneous
data sources [6]. Links in distributed datasets [14] usually occur between enti-
ties (a.k.a. instances) or terms (i.e. classes and properties), and can be not only
manually curated but also automatically generated [27]. Due to their complexity
and descriptive nature, the life science and health care domains have long been
used to assess the feasibility of advanced knowledge management systems. With
over 1,500 published biomedical databases, numerous efforts have been directed
towards establishing Linked Data for the life sciences, including Bio2RDF [5,8],
Chem2Bio2RDF [9], Neurocommons [24], the EBI RDF Platform [21], and W3C
HCLS Linked Open Drug Data.3 They contain millions of links (e.g. owl:sameAs
relations) over hundreds of datasets that partially overlap in content. Such rich
networks can yield insights into the basic structures demanded to express data
types, facilitate large-scale data integration, and help improve the overall qual-
ity of biomedical data. To the best of our knowledge, however, there is no such
study at present.

3 http://www.w3.org/wiki/HCLSIG/LODD
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In this paper, we conduct an empirical link analysis of the life science Linked
Data, obtained from the Bio2RDF project, in three perspectives:

– Dataset link analysis, which provides the statistics of datasets and their links
to other datasets based on the RDF data model;

– Entity link analysis, which captures the status and intended semantics of
links between entities using a special kind of cross-references in Bio2RDF;

– Term link analysis, which measures the overlap of topics between terms by
ontology matching.

For each perspective, we investigate the graph features of Bio2RDF vis-à-vis
what has been previously reported, e.g. [12,18]. Specifically, we represent datasets
(entities and terms respectively) and their links by a graph, and measure the de-
gree distribution, connectivity and clustering metrics. Furthermore, we examine
the symmetry and transitivity of entity links, and establish a benchmark to pre-
liminarily evaluate several entity matching approaches. In addition to study each
perspective alone, we also analyze their correlation. The data and results shown
in this paper are available at http://ws.nju.edu.cn/bio2rdf-analysis/.

Our analytical results and findings are expected to be useful in many areas.
For biomedical data exploration [4], our entity link analysis can help create mul-
tiple sets of links according to different equivalence criteria and interpretations,
e.g. “truly identical” or “close match”. Our dataset link analysis can help iden-
tify hidden links between hundreds of biomedical datasets and enable federated
SPARQL query processing. Our analysis can also be used to identify error links
and poorly annotated datasets, which require more manual or automated cura-
tion. Moreover, our empirical analysis of Bio2RDF may reveal some widespread
trends in the life sciences and even in the SW, which provide evidences for ap-
plications using Linked Data and guide future research.

The rest of this paper is organized as follows. Section 2 provides the prelim-
inaries used in the paper. In Section 3, we introduce the dataset link analysis.
In Section 4, we describe the entity link analysis and evaluate entity matching
approaches. In Section 5, we present the term link analysis. Section 6 measures
the correlation between the three different link structures. We introduce related
work in Section 7 and discuss our findings in Section 8. Finally, we conclude this
paper with future work in Section 9.

2 Preliminaries

Let U be the set of URIs, L be the set of literals, and B be the set of blank
nodes. A triple 〈s, p, o〉 ∈ (U ∪B) ×U × (U ∪ L ∪B) is called an RDF triple.
Following VoID [2], an RDF dataset is a set of RDF triples that are published,
maintained or aggregated by a single provider. Typically, a dataset is accessible
on the Web, for example through resolvable HTTP URIs or through a SPARQL
endpoint, and is identified by a namespace.

In a dataset, named classes, properties and instances are uniquely identified
using URIs. Classes and properties together are referred to as terms, and terms
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sharing a common namespace constitute a vocabulary. In this paper, instances
are particularly referred to as entities.

A graph comprises nodes and edges, and edges can be either ordered (a.k.a.
arcs) for a directed graph or unordered for an undirected graph. The degree of a
node is the number of edges incident to it. For a directed graph, we distinguish
between the outgoing degree and incoming degree of a node. The outgoing degree
of a node is the number of edges directed from it, while the incoming degree of a
node is the number of edges directed to it. A sink node is a node with outgoing
degree equal to 0, while a source node has its incoming degree equal to 0. The
degree of a node in a directed graph is the sum of its outgoing and incoming
degrees. A node with a degree of 0 is called an isolated node.

A random variable x is distributed according to a power law when its prob-
ability density function p(x) is in the form of p(x) ∝ x−α, where α is a positive
constant called power law exponent. Power law functions are scale-free, in the
sense that if x is rescaled by multiplying it by a constant, p(x) would still be pro-
portional to x−α. Clauset et al. [11] designed a well-known maximum-likelihood
method to estimate α for both discrete and continuous values.

A weakly connected component (WCC) for a directed graph is a subgraph in
which any two nodes can reach each other through some undirected path and to
which no more nodes or edges can be added while still preserving its reachability.
The number of nodes in a connected component is called its size.

The average distance for a WCC is the average shortest path length between
all nodes in the WCC. The clustering coefficient for a node in a WCC quantifies
how close its neighbors are to be a clique (complete graph), while the clustering
coefficient for the WCC is the average of the clustering coefficients of all nodes.
A graph demonstrates the small world phenomenon, if its clustering coefficient
is significantly higher than that of a random graph on the same node set, and if
the graph has a shorter average distance. Degree distribution, average distance
and clustering coefficient are considered as the three most robust measures of
network analysis.

3 Dataset Link Analysis

Bio2RDF [8] is an open source project that uses SW technologies to build and
provide the largest network of life science Linked Data. Particularly, Bio2RDF
defines a set of convention scripts to create RDFS compatible Linked Data from
a diverse collection of heterogeneously formatted sources obtained from multiple
data providers. In this analysis, we use Bio2RDF Release 3 (July 2014), which
is the latest version of Bio2RDF and contains about 11 billion RDF triples, 1
billion entities, 2 thousand classes and 4 thousand properties from 35 datasets.
For more information, please visit http://download.bio2rdf.org/release/3/
release.html. To conduct the dataset link analysis of Bio2RDF, we define the
dataset link graph as follows:

Definition 1 (dataset link graph) A dataset link graph, denoted by (D,A),
is a directed graph, where D is the node set, and each node Di ∈ D denotes a
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dataset; A is the arc set, and each arc (Di, Dj) ∈ A exists iff there are at least
k RDF triples 〈s, p, o〉 ∈ Di, where s, o are two URIs in Di and Dj respectively.
k is a non-negative integer to adjust the sparseness of arcs in the graph.

Since Bio2RDF has assigned unique names to the data lacking a source iden-
tifier, blank nodes are not existent in the datasets. The original dataset of a URI
is obtained by dereferencing the URI, because Bio2RDF includes a few datasets,
e.g. BioPortal and iRefIndex, which are themselves aggregates of other datasets
[8]. Also, meta-level URIs in RDF(S) and OWL are excluded as every Bio2RDF
dataset has RDF triples involving them.

Fig. 1(a) shows the generated dataset link graph for Bio2RDF. We observe
that the majority of the datasets is well linked and the largest connected compo-
nent contains 28 Bio2RDF datasets and 81 external datasets that have not been
converted in Bio2RDF. The upper right corner depicts seven isolated Bio2RDF
datasets that have not linked with others yet, while the upper left corner shows
three isolated external datasets linked by less than five triples. In consideration
of at least thousands of URIs in each dataset, we regard this little number as a
mistake. The lower right corner lists four connected datasets.

Due to most externally linked datasets do not support SPARQL queries, it
may be more fair to not consider the directionality of dataset links. The average
distance of the largest WCC in the figure is 2.77 and the clustering coefficient
is 0.22. The average distance and clustering coefficient for a random graph with
the same numbers of nodes and edges are 6.6 and 0.013, respectively. Thus, it
indicates very good connectivity among the datasets and reveals the small world
phenomenon. Additionally, Fig. 1(a) gives us several hints about the external
datasets that are direly needed in the next release of Bio2RDF, such as UniProt
and Ensembl, due to many Bio2RDF datasets linking to them (a.k.a. authorities
on the Web [7]).

More specifically, Fig. 1(b) illustrates that entities in the Bio2RDF datasets
are approximately normally distributed, where 23 datasets have hundred thou-
sands to millions of entities. We also show in this figure the datasets with most
or least entities.

Fig. 1(c) illustrates the link distribution between the Bio2RDF datasets only,
where OMIM has the most links with the other datasets (including 6 outgoing
links and 7 incoming links), followed by NCBI Gene (12 links) and KEGG (11
links). If we took the external datasets into account, the three datasets with most
out-going links (a.k.a. hubs [7]) would be KEGG (42 outlinks), PharmGKB (36
outlinks) and DrugBank (24 outlinks).

Fig. 1(d) shows the size variation of the largest WCC by keep removing the
datasets holding most links. The sequence of removal is KEGG, PharmGKB,
OMIM, DrugBank, InterPro and iProClass. We find that the size of the largest
WCC decreases slowly, which demonstrates good resilience among the datasets.

In overall, this analysis characterizes a landscape of the current Bio2RDF
datasets and provides the basis for analyzing entity and term links in the next
two sections.
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(a) Bio2RDF dataset link graph: (i) the cycles denote the datasets in Bio2RDF Release
3, while the squares represent the externally linked datasets (including BioPortal hosted
datasets such as GO). The size of each cycle indicates the number of entities contained
in the dataset; and (ii) the arcs constituted by at least five RDF triples are drawn in
the figure. The thickness of each arc indicates the number of RDF triples linking one
dataset to the other.
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4 Entity Link Analysis

During the dataset link analysis, we observe that the majority of dataset links
is generated from a special kind of RDF triples in the form of 〈s, x-relation, o〉.4
X-relations contribute to more than 76% entity links, followed by article (12%),
gene (4.3%) and disease (1.8%), but they have under-specified semantics.

As an example, kegg:x-drugbank links a KEGG entity (e.g. kegg:D03455) to a
DrugBank entity (e.g. drugbank:DB00002) and its intended meaning is to specify
that these two entities are “truly identical” (e.g. both refer to the same drug “Ce-
tuximab”), but kegg:x-drugbank is not defined as a sub-property of owl:sameAs.
In another case, kegg:x-pubmed signifies a reference to a scientific article that is
indexed in the PubMed dataset. Other meanings that we observed include “part
of” and “close match”. Actually, due to the design principles of Bio2RDF [18],
owl:sameAs would be only used when the URI is precisely another name for an
entity in the original dataset, for instance, where Bio2RDF URIs for DrugBank
entries coincide with URIs assigned by DrugBank itself.

Since x-relations are key to link entities in Bio2RDF, we seek to examine its
role in link structure and determine the extent to which we can use x-relations
to create entity links. We define the entity link graph using x-relations:

Definition 2 (entity link graph) An entity link graph, denoted by (E,X), is
a directed graph, where E is the node set, and each node ei ∈ E represents an
entity; X is the arc set, and each arc (ei, ej) ∈ X exists iff there is an x-relation
linking ei to ej, in other words, there exists an RDF triple 〈ei, x-relation, ej〉.

4.1 Degree Distribution

We generate the entity link graph for Bio2RDF. In Fig. 2, we depict the link
distributions (incoming and outgoing) and related statistics for three different
types of entities from three datasets: OMIM, NCBI Gene, and KEGG. These
three datasets exhibit the most links with the other Bio2RDF datasets (as shown
in Fig. 1(c)). The selected types, namely Gene, Phenotype and Drug, have the
largest numbers of entities in the corresponding datasets.

We observe that the outgoing/incoming degree distributions of entity links in
the three datasets do not exhibit the power law pattern characteristic of scale-
free networks (except the outgoing degree distribution for ncbigene:Gene). We
find that there are fewer entities with an outgoing/incoming degree of 10 than
one would expect from a power law distribution. This may be a consequence of
overlap among the Bio2RDF datasets such that entities in one dataset are likely
to link with at least a certain number of entities in the remaining datasets. Also,
the exponents are large (close to 5) and p-values are very small (close to 0).5 In
particular, only four datasets link to KEGG and there is no many-to-one links

4 These cross-references are created by the original data owners, while Bio2RDF just
uniformly converts them to x-relations.

5 The power law hypothesis should be rejected for p-values below 0.01 [11].



between their entities, thus the incoming degree distribution for kegg:Drug is
sparse. Our results therefore differ from the calculated in-degree distribution of
owl:sameAs on the 2010 Billion Triples Challenge (BTC) dataset [12]. We argue
that this may be the result of link bias from the life science data providers.

In Table 1, we observe that a few entities link to hundreds of other entities,
and most of them are widely studied genes and have many related publications
or images. Due to the size of NCBI Gene, many entities are not linked by other
entities, resulting in a large number (162,018) of source nodes. A direct outcome
of our analysis is that we identified one super-connected node (linked to 75,000
nodes), which turned out to be the result of wrong parsing. This bug was fixed
immediately by the authors and an updated dataset was released.
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Fig. 2. Bio2RDF entity link distribution: (i) the figures are presented in log-log scale;
and (ii) only the datasets in Bio2RDF are considered for computing incoming degrees.



Table 1. Degree analysis of entity links

Entity Entity Avg. Avg. Max. Isolated Sink Source
types number outdegree indegree degree nodes nodes nodes

omim:Gene 14,609 50.3 12.8 3,409 12 15 118
omim:Phenotype 5,825 5.2 10.5 414 34 38 1,027
ncbigene:Gene 394,479 10.8 2.9 6,798 0 0 162,018
kegg:Drug 10,082 4.5 0.2 139 0 0 8,785

4.2 Symmetry and Transitivity of Entity Links

As the entity link graph is directed, we seek to examine the symmetry of entity
links. We find that only four pairs of datasets link to each other bi-directionally
in Bio2RDF, which are DrugBank—KEGG, DrugBank—PharmGKB, OMIM—
HGNC and OMIM—Orphanet.

Table 2 lists the results on the symmetry of entity links in the four dataset
pairs, where a reciprocal link indicates that two entities ei, ej are linked from
both directions, a malposed link represents that ei, ej are linked in one direction
(e.g. ei → ej) but in the other direction ej links to someone else (e.g. eh ← ej),
and a missing link implies that either of the two directions is missing.

We observe that the symmetry of entity links varies between different pairs of
datasets. For DrugBank—PharmGKB and OMIM—HGNC, a large proportion
(99%) of entity links are reciprocal. A possible explanation is that one dataset
just borrows the links from the other dataset and simply reverses them. On the
other hand, DrugBank—KEGG and OMIM—Orphanet have different numbers
of entity links from different directions and are mainly caused by their modeling
divergence. For example, OMIM only creates the class omim:Phenotype instead
of “Disease” and use it to link to orphanet:Disorder, which causes many links lost
in the other direction, since a disorder may have many different phenotypes.

Also, we analyze the transitivity of entity links, which means that a direct
entity link ei → ej may also be inferred from a transitive path through entity
links ei → ek → . . . → ej . We find three transitive examples in the Bio2RDF
datasets and show them in Fig. 3, where an identical (or different) ending entity
indicates that the same entity (different entities) can be achieved through a direct
link and a transitive path from the same beginning entity. If the ending entity
from the direct link is missing, it is called “missing direct”, while the ending
entity from the transitive path is missing, it is called “missing transitive”.

Table 2. Symmetry analysis of entity links

Forward Backward Reciprocal Malposed Missing Total

DrugBank—KEGG 1,289 2,155 1,964 485 995 3,444
DrugBank—PharmGKB 1,624 1,619 3,210 4 29 3,243
OMIM—HGNC 14,274 14,423 28,514 6 177 28,697
OMIM—Orphanet 6,137 2,600 4,464 2,523 1,750 8,737
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Direct Transitive Identical Different Missing Missing
Total

links paths ending entities direct transitive

Drugs 1,289 954 946 6 2 343 1,297
Human genes 14,276 14,250 14,236 5 9 40 14,290
Diseases 657 33 8 18 7 649 682

Fig. 3. Transitivity analysis of entity links: (i) the value in each parenthesis denotes
the number of entities given a specified topic; and (ii) the solid arcs represent direct
links between entities while the dashed arcs form transitive paths. The value on each
arc denotes the number of entity links from one dataset to the other.

Our analysis reveals that most links are confirmed through transitivity among
the human gene link network only. In the other two examples, there are some
intermediate datasets, such as Orphanet, which affect the transitivity. To im-
prove connectivity in the future, these datasets should be enhanced. Also, the
number of links may decrease significantly with the increase of transitive path
length. Therefore, the transitivity of entity links is often topic-dependent, and
its accuracy varies in different contexts.

We take a deeper look at these transitive entity links. Fig. 4 exemplifies two
different ending entities from DrugBank to KEGG, where one is from a direct link
and the other is from a transitive path. The two drugs have different names but
highly similar chemical structures (a.k.a. isomers), and their medical functions
are similar as well. The DrugBank provider thinks that the two drugs are the
same, while the KEGG provider uses different URIs to identify them without
any equivalence relation. This example illustrates the difficulty of linking entities
in the life sciences, caused by modeling divergence.

4.3 Evaluation of Entity Matching Approaches

According to our analysis above, we observe that an x-relation probably repre-
sents the owl:sameAs relation between two entities if they have the same or very
similar types. Furthermore, although owl:sameAs is not a necessarily symmetric



(a) Levonorgestrel (kegg:D00950)
using direct link

(b) Norgestrel (kegg:D00954) using
transitive path

Fig. 4. Different ending entities from starting entity drugbank:DB00367

property [12], it is considered strongly equivalent only when reciprocal links exist.
These observations guide us to use the reciprocal links between similarly-typed
entities to build a benchmark and evaluate entity matching approaches.

For this purpose, we reuse the four pairs of datasets in Table 2. A commonly-
used approach to entity matching in the life sciences is by comparing the labels
of entities [17]. We develop four different string comparison algorithms based on
Levenshtein, Jaro-Winkler, N-gram (N = 2) and Jaccard distances respectively
to compute the similarity of labels. For each algorithm, we change the similarity
threshold from 0.1 to 0.95 (step by 0.05) to achieve the highest F1-score, where

F1-score = 2×Precision×Recall
Precision+Recall

. In overall, the best threshold for each algorithm

falls into [0.5, 0.8]. For instance, the best threshold for Jaro-Winkler is achieved
at 0.75 when matching DrugBank and KEGG.

Linear regression and logistic regression are often employed to make use of
more properties in entities. We re-implement the approach in [28] to identify
five matched property pairs by 10-fold cross-validation and combine them using
linear or logistic regression for similarity computation. The threshold is set to
0.25, which achieves the best F1-score.

Our experimental results are shown in Fig. 5. We observe that N-gram and
Jaro-Winkler algorithms obtain the best F1-score among the string comparison
algorithms. But their results are far from perfect, because there are many other
useful properties. For example, by considering the property “chemical formula”,
the F1-scores achieved by logistic regression consistently rise up on all the drug
datasets. For OMIM—Orphanet, the low F1-scores are caused by many-to-one
links between the entities in omim:Phenotype and orphanet:Disorder.

Moreover, four small-scale drug datasets are provided in OAEI2010 and two
entity matching systems participated in the test [15]. However, due to the reli-
ability of reference links, the test did not make clear conclusions. We published
our benchmark on our website and expect that it can help both researchers and
practitioners in biomedicine and the SW verify their entity linking approaches
and tools in future.
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Fig. 5. F1-scores of entity linking approaches

5 Term Link Analysis

Ontology matching aims at creating mappings between terms (classes and prop-
erties) from different vocabularies [14], which has already been used for the term
link analysis on the SW [17,19,23]. In order to investigate the link structure of
terms in Bio2RDF, we define the term link graph as follows:

Definition 3 (term link graph) A term link graph, denoted by (T,M), is an
undirected graph, where T is the node set, and each node ti ∈ T denotes a term;
M is the edge set, and each edge (ti, tj) ∈M exists iff there is a mapping between
ti and tj with similarity greater than a specified threshold η ∈ [0, 1).

We construct the term link graph for Bio2RDF using Falcon-AO [20], which
is a fully automatic ontology matching tool. The strength of Falcon-AO is that
it combines various powerful matchers including two linguistic matchers and a
structural matcher. We also enhance Falcon-AO with background knowledge to
support synonym identification in the life sciences, e.g. “disease” vs. “disorder”.
It is worth noting that there are many approaches and tools can be used as alter-
natives for this analysis [14]. Among others, Ghazvinian et al. [17] used a simple
lexical matching of preferred names and synonyms to generate mappings across
all classes in 207 biomedical ontologies, while Nikolov and Motta [23] captured
the mappings between classes by analyzing existing entity links. However, both
of them did not consider the property matching problem.

For the 35 datasets in Bio2RDF, we create 82,689 mappings between classes,
1,540 mappings between object properties and 858 mapping between data prop-
erties, with similarity greater than 0.9. We set this threshold based on our em-
pirical experience to achieve a high precision. Due to the simple structure of the
Bio2RDF vocabularies, most mappings are found by linguistic matching (similar
to [17]). We also note that the mappings between classes are largely in consistent
with those discovered in [8] between SIO (Semanticscience Integrated Ontology)
and 19 vocabularies in Bio2RDF Release 2. However, SIO only defines very gen-
eral level properties (e.g. “has attribute”), and matches the properties in other
vocabularies using the super/sub-property relation.



Table 3. Top-5 popular labels for classes and properties

(a) Classes

Labels
Distinct

URIs

Resource 35
Gene 10
Drug 6
Enzyme 5
Pathway 5

(b) Object properties

Labels
Distinct

URIs

x-uniprot 11
x-ncbigene 10
article 8
gene 8
source 8

(c) Data properties

Labels
Distinct

URIs

synonym 25
definition 22
comment 9
chromosome 8
name 8

We extract the label of each term in these mappings and count the times of
each label appearing in different terms (by ignoring their string cases). The five
most frequently-occurred labels for classes, object and data properties are list in
Table 3, where “Resource” is used in all the Bio2RDF datasets to define entities.
However, unlike the findings in [17,19], the degree distribution of term links does
not obey the power law, because there is a significant overlap between terms in
different vocabularies, indicating that most biomedical data providers have very
similar topic interests like genes and drugs. Besides, the created mappings can
be used to support query rewriting in applications.

6 Correlation of Different Link Graphs

Earlier in this paper, we have showed our link analysis of datasets, entities and
terms respectively. It is also natural for us to ask whether the three types of link
graphs are correlated or independent. The Spearman’s rank correlation coefficient
(denoted by ρ ∈ [−1, 1]) measures the agreement degree between two rankings
[22], which is suitable for answering our question. The sign of ρ indicates positive
or negative correlation, while its absolute value assesses relative degree, with a
larger absolute value being stronger correlation.

We abstract the entity and term link graphs to the dataset level and order
the Bio2RDF dataset pairs based on their correlation values. For the entity link
graph, the correlation value between two datasetsDi, Dj is defined as the number
of direct entity links between Di, Dj divided by the total number of entities in
Di, Dj . Note that both directions are involved, i.e. Di → Dj and Dj → Di.

Inspired by [19], the correlation value of two datasets derived from the term
link graph is defined as the ratio of the number of term mappings between the
two datasets to the total number of their terms. Note that term mappings are
undirected according to our definition.

For the dataset link graph in Fig. 1(a), the correlation value of two Bio2RDF
datasets is obtained by finding the shortest path between them, with a shorter
length being more strongly correlated. This measure has also been used in [10].
Therefore, we generate three rankings of all pairs of Bio2RDF datasets from the
entity, term and dataset link graphs.



Table 4. Spearman’s rank correlation coefficients among link graphs

Dataset link graph Entity link graph

Entity link graph 0.51
Term link graph 0.42 0.16

Table 4 lists the correlation coefficients among the entity, term and dataset
link graphs. The signs reflect that all the three graphs are positively correlated,
where the dataset link graph has strong correlation with the entity link graph
(ρ = 0.53) as well as the term link graph (ρ = 0.42). It can be explained as closer
datasets in distance predicting more linked entities along with more matched
classes and properties.

On the other hand, the correlation coefficient between the entity link graph
and the term link graph is not strong (ρ = 0.16), which demonstrates that the
number of linked entities contributes little to the overlap of vocabularies, since
linked entities may centralize in a few classes, while entities under other classes
have not been interlinked yet.

7 Related Work

Network analysis has long been used to study link structures in biomedicine and
the Web. The small world phenomenon and the scale-free characteristic are often
observed [1,3,7,11]. Recently, it has been conducted on the SW. Theoharis et al.
[26] investigated the graph features of 250 ontologies and found that a major-
ity of ontologies with a significant number of properties approximate powers for
the total degree, while each ontology owns a few focal classes with considerable
properties and subclasses. Ell et al. [13] introduced a set of label-related metrics
including completeness, accessibility, unambiguity and multi-linguality to mea-
sure the current state of labeling the Web of Data. These works did not address
the relations across different datasets.

To examine entity links, Ding et al. [12] carried out an empirical experiment
of the owl:sameAs deployment status and used the statistics to focus discussion
on the usage of owl:sameAs in the BTC2010 dataset. Our findings in Bio2RDF do
not match their results in some aspects. Halpin et al. [18] found that owl:sameAs
is widely misused to capture different degrees of equivalence, and its practical
use is not limited to the case where two entities are truly identical but instead
includes application scenarios where they can be treated as being operationally
equivalent. Our investigation on the x-relations in Bio2RDF well confirms their
observation. For a more general notion of links, Ge et al. [16] defined the object
link graph according to the RDF data model and compared the graph features
of two object link graphs crawled by the Falcons search engine in 2008 and 2009
respectively, containing some incomplete biomedical data.

Analysis of term links has also been performed. Ghazvinian et al. [17] ana-
lyzed the morphology of term mappings between 207 vocabularies in BioPortal
and UMLS, while Hu et al. [19] extended this idea to a larger scale containing



four thousand Web ontologies. Nikolov and Motta [23] created term mappings
from declared coreference association (e.g. owl:sameAs) and co-typing, where a
term mapping can hold either the equivalence or subsumption relation. Tordai
et al. [26] empirically studied the quality of chains of (almost) equivalent terms
in the domains of biomedicine, cultural heritage and library subject headings
with multiple languages (English, Dutch, German and French). More generally,
Cheng et al. [10] presented the declarative, topical and distributional relatedness
between three thousand vocabularies and the correlation of these relatedness.
Unlike these works, we holistically analyzed the life science Linked Data on the
levels of datasets, entities and terms.

8 Discussion of Findings

The analytical results that we have presented in the previous sections allow us
to make the following observations:

– Bio2RDF offers the biggest network of the life science Linked Data and also
is a significant portion of Linked Open Data, which ensures the significance
of our empirical study. Although our hypothesis is that the life science data
network should be in consistence with that of the SW, we are surprised that
some results turn out to be different than previously reported, e.g. the degree
distribution of entity links does not strictly follow the power law.

– A dominated part of entities in Bio2RDF have been linked using x-relations,
but the intended semantics of these entity links differs. When the meanings
of two classes are identical or equivalent and their belonging datasets also
have close topics, the entity links are likely to represent logical equivalence.
Additionally, the classes and properties in different Bio2RDF datasets have
large overlap and can be identified mainly by linguistic matching.

– Symmetric and transitive entity links exist in Bio2RDF, which can reinforce
the correctness of these links, but their effectiveness is currently weakened
due to the relatively small number. Adding more symmetric and transitive
links should be an important future work for the life science data providers
and aggregators (e.g. OpenLifeData6). Besides, the meanings of entity links
may be shifted during transitive. In consideration of the quality and coverage
of the entities and terms in Bio2RDF, we suggest to use KEGG, DrugBank
and OMIM as the most prominent knowledge bases for applications in the
life sciences.

– Previous work has demonstrated the effectiveness of using string matching
to find linked entities or terms [15]. However, according to our benchmark,
only considering the labels of entities may fail in some cases, e.g. comparing
short-form abbreviations of gene names, while combining different properties
and using simple machine learning algorithms like logistic regression achieve
a good accuracy. However, discovering many-to-one links between entities is
still a difficult problem that needs to be carefully studied.

6 http://www.openlifedata.org/

http://www.openlifedata.org/


9 Conclusion

In this paper, we described our analytical results of the life science Linked Data,
obtained from the Bio2RDF project, so as to better inform the development of
novel methods for exploring, querying and analyzing this wealth of knowledge.
Our link analysis coupled with a benchmark give a first glimpse concerning the
structure of the life science Linked Data, and offer new results by which we and
others may utilize in future. A question raised from our study is how to make use
of the findings to improve applications in the life sciences. Another future work
is to repeat analysis on other linked biomedical data and compare the findings.
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