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Abstract Quite often, Linked Open Data (LOD) applications pre-fetch data from
the Web and store local copies of it in a cache for faster access at runtime. Yet,
recent investigations have shown that data published and interlinked on the LOD
cloud is subject to frequent changes. As the data in the cloud changes, local
copies of the data need to be updated. However, due to limitations of the available
computational resources (e.g., network bandwidth for fetching data, computation
time) LOD applications may not be able to permanently visit all of the LOD
sources at brief intervals in order to check for changes. These limitations imply
the need to prioritize which data sources should be considered first for retriev-
ing their data and synchronizing the local copy with the original data. In order
to make best use of the resources available, it is vital to choose a good schedu-
ling strategy to know when to fetch data of which data source. In this paper, we
investigate different strategies proposed in the literature and evaluate them on a
large-scale LOD dataset that is obtained from the LOD cloud by weekly crawls
over the course of three years. We investigate two different setups: (i) in the single
step setup, we evaluate the quality of update strategies for a single and isolated
update of a local data cache, while (ii) the iterative progression setup involves
measuring the quality of the local data cache when considering iterative updates
over a longer period of time. Our evaluation indicates the effectiveness of each
strategy for updating local copies of LOD sources, i. e, we demonstrate for given
limitations of bandwidth, the strategies’ performance in terms of data accuracy
and freshness. The evaluation shows that the measures capturing change behav-
ior of LOD sources over time are most suitable for conducting updates.

1 Introduction

Quite often, LOD applications pre-fetch data from the Web and store local copies of
it in a cache or build an index over it to speed up access and search. Recent investi-
gations [22,2,15,1,10,11] have shown that data published and interlinked on the LOD
cloud is subject to frequent changes. As the data in the cloud changes, these caches or
indices no longer reflect the current state of the data anymore and need to be updated.
Käfer et al. [17] observed a subset of the LOD cloud over a period of 29 weeks and
concluded (among others) that the data of 49.1% of the LOD sources changes. Like-
wise, Gottron et al. [12] observed LOD data over a period of 77 weeks and described
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that the accuracy of indices built over the LOD sources drops by 50% after already 10
weeks. These outcomes indicate that almost half of the LOD sources are not appropri-
ate for long-term caching or indexing. Unquestionably, data on the LOD cloud changes
and knowledge about these changes, i. e., about the change behavior of a dataset over
time, is important as it affects various different LOD applications such as indexing of
distributed data sources [18], searching in large graph databases [13], search optimiza-
tion [19], efficient caching [8,24,14], and recommending vocabularies to Linked Data
engineers [21].

LOD applications relying on data from the LOD cloud need to cope with constant
data updates to be able to guarantee a certain level of quality of service. In an ideal
setting, a cache or an index is kept up-to-date by continuously visiting all data sources,
fetching the most recent version of the data and synchronizing the local copies with it.
However, in real world scenarios LOD applications must deal with limitations of the
available computational resources (e.g., network bandwidth, computation time) when
fetching data from the LOD cloud. These limitations imply the necessity to prioritize
which data sources should be first considered for retrieving their data. In order to make
best use of the resources available, it is vital to choose a good scheduling strategy for
updating local copies of the LOD data sources. While there exists research on the fresh-
ness analysis of the cached data for answering SPARQL queries in a hybrid approach
such as Umbrich et al [24], to the best of our knowledge, there is no work addressing
strategies to efficiently keep local copies of LOD source up-to-date.

Intuitively, a strategy dedicated to update data caches build out of data from the
LOD cloud would make use of the HTTP protocol. The Last-Modified HTTP header
field denotes when a LOD source behind this URI has been changed last. However, in a
previous investigation [9], we showed that only very few LOD sources (on average only
8%) provide correct update values. Consequently, applications relying on such informa-
tion are susceptible to draw wrong conclusions. Thus, this method is inappropriate for
probing a LOD source for whether or not it has been changed since the last retrieval of
its data. The only alternative is to actually retrieve the data from the sources and check
it for changes.

In this paper, we consider update scheduling strategies for maintaining indices of
web documents and metrics initially developed to capture the data changes in LOD
sources and analyze their effectiveness for updating local copies of LOD sources. Sche-
duling strategies aim for deriving an order for data sources to when they should be
visited. Consequently, the application updates its local copy by fetching data from the
data sources following this order. The simplest strategy is to visit the data sources in
an arbitrary but fixed order, which guarantees that the local copy of every data source
is updated after a constant interval of time. Alternative strategies explore the different
features provided by the data sources, e. g., their size, to assign an importance score to
each data source, and thus deriving an order. An established scheduling strategy for the
Web leverages the PageRank algorithm [20], where a score of importance is given to
each data source regarding its centrality in the link network with other data sources.

When considering a set of LOD sources, certainly some of them change more or
less often than others [17]. For example, it is not likely that in a short time interval
every LOD source changes. Thus, many sources may provide the same information
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during this entire interval. Therefore, is not necessary to fetch data from such sources.
However, whenever data of a source changes, an update is required. Accordingly, some
sources should be fetched at shorter/longer time-intervals. This implies that each LOD
source could be given a different update importance, which is based on their change
behaviour. We consider change metrics for LOD data sources presented in [11]. These
metrics measure the change rate of a dataset based on the changes that have taken
place between two points in time. Furthermore, in previous work [10], we propose the
notion of dynamics of LOD datasets. The dynamics function measures the accumulated
changes that have occurred within a data set in a given time interval. Even though these
metrics were not directly proposed to support scheduling strategies for data updates,
measures that capture the change rate or dynamics of a LOD dataset may indeed be
used for conducting updates.

We evaluate different strategies on a large-scale LOD dataset from the Dynamic
Linked Data Observatory (DyLDO) [17] that is obtained via 149 weekly crawls in the
period from May 2012 until March 2015. We investigate two different setups: (i) in the
single step setup we evaluate the quality of update strategies for a single and isolated
update of a local data cache, while (ii) the iterative progression setup involves measur-
ing the quality of the local data cache when considering iterative updates over a longer
period of time. Quality is measured in terms of precision and recall with respect to the
gold standard, i. e., we check the correctness of data of the (updated) local copy with
respect to the data actually contained in the LOD cloud. We assume that only a certain
bandwidth for fetching data from the cloud is available, and we investigate the effec-
tiveness of each strategy for different bandwidths. Therefore, in the first setup, we can
observe the relation between strategies and restrictions of bandwidth (i. e., if the strate-
gies show comparatively uniform performance over all restrictions or if better/worse
performance depends on a given restriction), and use such findings as parameters for
the second setup. The second setup evaluates the behavior of the strategies in a realis-
tic scenario (e. g., a LOD search engine updating its caches). Our evaluation indicates
the most effective strategies for updating local copies of LOD sources, i. e., we demon-
strate for given restrictions of bandwidth, which strategy performs better in terms of
data accuracy and freshness.

2 Foundations

Linked Data that is crawled from the cloud can be represented in the form of N-Quads1.
Technically, a quad (s, p, o, c) consists of an RDF triple where s, p, and o correspond
to the subject, predicate and object and the context c, i. e., the data source on the Web
where this RDF triple was retrieved.

We assume that data from the various LOD sources is retrieved at some fix point
in time t. We consider that an application visits and fetches data of LOD sources at a
regular interval (say, once a week). Consequently, a LOD data source is defined by a
context c and the data it provides at points in time t, i. e., the set of RDF quads Xc,t.
Furthermore, we denote the size of a data set with |Xc,t| to indicate the number of
triples contained in the data set at context c at the point in time t.

1 W3C Recommendation http://www.w3.org/TR/n-quads/
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In this paper, we rely on local copies of the LOD sources. Such a copy typically
covers several data sources. Given a set C = {c1, c2, . . . , cm} of contexts of interest,
we can define the overall dataset as:

Definition 1. Dataset
Xt =

⋃
c∈C

Xc,t (1)

Example 1. As a matter of example, we consider that data comes from three different
data sources: dbpedia.org, bbc.co.uk, and musicbrainz.com, and data is retrieved at two
different points in time, on May 8th, 2013 and on June 10th, 2013.

X2013-05-08 = {Xdbpedia.org,2013-05-08, Xmusicbrainz.com,2013-05-08, Xbbc.co.uk,2013-05-08},
X2013-06-10 = {Xdbpedia.org,2013-06-10, Xmusicbrainz.com,2013-06-10, Xbbc.co.uk,2013-06-10}

Finally, for distinct points t1, t2, . . . , tn in time, we define a series of datasets over
time:

Definition 2. Series of Datasets

X = (Xt1 , Xt2 , . . . , Xtn) (2)

Example 2. Our example dataset is composed by data retrieved at two different points
in time (see Example 1) such that X = (X2013-05-08, X2013-06-10).

3 Update Scheduling Strategies

Due to limitations such as bandwidth restrictions and the frequent data changes in the
LOD cloud, LOD applications relying on data from the LOD cloud need to prioritize
which data sources should be first considered in order to achieve an optimal accuracy
of their local copies under the given constraints. Therefore, applications make use of a
scheduling strategy for data updates. A scheduling strategy aims for deriving an order
of importance for data sources based on a set of data features. In the ideal case, a
strategy would derive an order such that the application would visit only the subset of
LOD sources which have actually been changed. In this section, we introduce a formal
specification of update functions and a set of data features used by update strategies for
deriving such an order.

3.1 Data Updates

Whenever an application needs to update a local copy covering the data sources in
c ∈ C, at time ti+1, it would technically be sufficient to fetch the complete dataset
Xti+1 . However, this would imply to visit all data sources c, retrieve their most recent
version of the data Xc,ti+1

and integrate it into one dataset Xti+1
. Due to limitations

such as network bandwidth capacity for downloading data or computation time, we
assume that only a certain fraction of the data can actually be retrieved fresh from the
cloud and processed in a certain time interval.
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Thus, applications need to apply a scheduling strategy to efficiently manage the
accuracy of the data. Based on features extracted from the dataset retrieved at an earlier
point in time ti, a scheduling strategy indicates which data sources c should be visited
(i. e., visit the URI c and fetch the latest version of the data made available at this URI)
in the time slice between ti and ti+1. The update strategy can simply be seen as a
relation:

Definition 3. Update Strategy

U ⊂ C × {1, . . . , n} (3)

A tuple (c, i) in this relation indicates a point in time ti at which data from a data
source c should be updated.

Furthermore, we define the constraint of the bandwidth as a restriction to download
at most up to K triples.

Definition 4. Constraint of the Bandwidth

For a given i :
∑

(c,i)∈U

|Xc,ti | ≤ K (4)

For any given constraint of the bandwidth, it is possible to retrieve data from the
sources in their order of preferences until the limit has been reached.

Example 3. Suppose our dataset has been updated the last time on May 8th, 2013 (see
Example 1), and we want to again update our local copy on June 10th, 2013. However,
due to limitations, the constraints of the bandwidth enables only K = 12, 000 triples to
be fetched per time slice. For such constraints, we suppose we cannot fetch all the data
since |Xdbpedia.org,2013-05-08|+ |Xmusicbrainz.com,2013-05-08|+ |Xbbc.co.uk,2013-05-08| ≥ 12, 000.
Nevertheless, without violating these restrictions, we suppose we can entirely fetch data
from the first two data sources: dbpedia.org and musicbrainz.com.

We define a last update function lu to identify for a specific data source and a given
point in time when its data was updated last:

Definition 5. Last Update Function

lu(c, i) = argmaxj≤i{(c, j) ∈ U} (5)

This function can be used recursively to identify, for instance, the update prior to
the last update by lu(c, lu(c, i)− 1).

Example 4. In the previous example, we updated our local copy by fetching data from
dbpedia.org and musicbrainz.com, then the last update time of the data sources are
given as:

lu(dbpedia.org, 2013-06-10) = lu(musicbrainz.com, 2013-06-10) = 2013-06-10,
lu(bbc.co.uk,2013-06-10) = 2013-05-08
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Using the last update function lu at time ti, we can define the aggregated data set
according to an update strategy, i. e., which version of which data source is part of the
current local copy. This aggregated data set X ′ti is defined as:

Definition 6. Aggregated Data Set

X ′ti =
⋃
c∈C

Xc,tlu(c,i)
(6)

Example 5. Following Example 4, our updated dataset for June 10th, 2013 is given as:
X ′2013-06-10 = {Xdbpedia.org,2013-06-10, Xbbc.co.uk,2013-05-08, Xmusicbrainz.com,2013-06-10}

Finally, using this notation, we can easily construct the history of a particular data
source in the course of execution of an update plan over time up to time ti:

Definition 7.
H(c, ti) = {Xc,tj |(c, j) ∈ U, tj ≤ ti} (7)

Example 6. The history of our sample data source dbpedia.org is given as:

H(dbpedia.org, 2013-06-10) = {Xdbpedia.org,2013-06-10, Xdbpedia.org,2013-05-08}

3.2 Data Features

In the following, we present features proposed in the literature to improve the freshness
of cached data. Here, we restrict ourselves to define only those features that will actually
be used in our experiments. Please note that the set of features of a data source can
always be extended.

Age provides the time span since the data source has been last visited and updated [4].
It captures ’how old’ is the data provided by a data source:

fAge(c,X
′
ti) = ti − tlu(c,i) (8)

PageRank provides the PageRank of a data source in the overall data set at the (last
known) time [20]:

fPageRank(c,X
′
ti) = PR(Xc,tlu(c,i)

) (9)

Size provides the (last known) number of triples provided by a data source:

fSize(c,X
′
ti) = |Xc,tlu(c,i)

| (10)

ChangeRatio provides the absolute number of changes of the data in a data source
between the last two (known) observation points in time [7].

fRatio(c,X
′
ti) = |Xc,tlu(c,i)

\Xc,tlu(c,lu(c,i)−1)
|+|Xc,tlu(c,lu(c,i)−1)

\Xc,tlu(c,i)
| (11)
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ChangeRate provides the change rate between the observed data in the two (last known)
points in time of a data source [11].

fChange(c,X
′
ti) = ∆(Xc,tlu(c,i)

, Xc,tlu(c,lu(c,i)−1)
) (12)

In this case, the change rate ∆ is a function (metric) to measure the change rate
between two data sets. We will use two ∆ functions:
Jaccard distance:

∆(Xc,tlu(c,lu(c,i)−1)
, Xc,tlu(c,i)

) = 1−
|(Xc,tlu(c,lu(c,i)−1)

) ∩ (Xc,tlu(c,i)
)|

|Xc,tlu(c,lu(c,i)−1)
) ∪ (Xc,tlu(c,i)

)|

Dice Coefficient:

∆(Xc,tlu(c,lu(c,i)−1)
, Xc,tlu(c,i)

) = 1−
2 ∗ |(Xc,tlu(c,lu(c,i)−1)

) ∩ (Xc,tlu(c,i)
)|

|Xc,tlu(c,lu(c,i)−1)
)|+ |(Xc,tlu(c,i)

)|

Dynamics measures the behavior of the data source observed over several points in
time [10], where the dynamics of a data source is defined as the aggregation of
absolute changes, as provided by ∆-metrics.

fDynamic(c,X
′
ti) =

j∑
i=0

∆(Xc,tlu(c,lu(c,i)−1)
, Xc,tlu(c,i)

)

tlu(c,i), tlu(c,lu(c,i)−1)
, j ≤ i.

3.3 Update Function

As a large number of LOD sources are available but only a limited number of sources
can be fetched per run, it is required to determine which sources should be visited
first. By using the vector of features of each data source, we define an update function
ρ : f → R, which assigns a preference score to a data source based on the observed
features at time ti.

An update strategy is defined by ranking the data sources according to their pref-
erence score in descending or ascending order, and fetching them starting from the top
ranked entry to some lower ranked entry. For instance, if we consider fSize to be the
feature observed at time ti for all c ∈ C, ρ could be defined as the rank of the data
sources in ascending order (from the smallest to the biggest ones).

Furthermore, the bandwidth defines the amount of data that can be fetched per run.
Consequently, at some point in time ti, data of a set of data sources is updated until the
bandwidth constraint has been consumed completely. For the sake of clarity, we discard
a data source when its data cannot completely be fetched, i. e., when the last started fetch
operation cannot be entirely executed because of the bandwidth limit being violated
while reading the data. We consider that the tuple (c, i) is considered to be in the update
relation U defined above, if the data from c can be entirely fetched based on the given
order and the available bandwidth. Without loss of generality, we assume that the data
sources are visited in a sequential order. However, it is left to the implementation to
decide whether data from the different data sources should be fetched in sequential or
parallel processing.
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4 Evaluation

In this section, we consider the scheduling strategies described in Section 3 and an-
alyze their effectiveness for updating local copies of the LOD sources. We evaluate
these strategies on a large-scale and real world LOD dataset. Our evaluation goal is to
show which of the update strategies produce better updates of the LOD sources, i. e,
we demonstrate for given restrictions of bandwidth, which strategy performs better in
terms of data accuracy and freshness.

4.1 Data

Our evaluation dataset is obtained from the Dynamic Linked Data Observatory (DyLDO).
The DyLDO dataset has been created to monitor a fixed set of Linked Data documents
(and their neighborhood) on a weekly basis2. Our evaluation dataset is composed of
149 weekly crawls (in the following we will refer to a crawl as a snapshot) correspond-
ing to a period over the last three years (from May 2012 to March 2015). Furthermore,
the DyLDO dataset contains various well known and large LOD sources, e. g., dbpe-
dia.com, musicbrainz.com, and bbc.co.uk as well as less commonly known ones, e. g.,
advogato.org, statistics.data.gov.uk, and uefa.status.net. For more detailed information
about the DyLDO dataset, we refer the reader to [17]. As we use weekly crawls ob-
tained from the DyLDO dataset, we are only able to grab changes occurring between
consecutive weeks (e. g., daily changes are not considered).

To gain a better insight into our evaluation dataset, let us first look at the evolution
of the snapshots. The number of data sources per snapshot ranges between 465 and 742.
On average, a snapshot is composed of 590 data sources. During the period studied, the
number of data sources per snapshot slightly decreased, due to data sources going tem-
porarily or permanently offline. Looking at consecutive snapshots, on average 1.05% of
the data sources per snapshot are new and previously unseen (data sources birth rate),
and 1.36% of the data sources disappear each week (death rate). On average, 99.3% of
the data sources remain in existence between consecutive snapshots, and 37.3% of them
change on a weekly basis. Taking the first snapshot as reference, only 13.9% of the data
sources remain unchanged over the entire interval studied. This overview confirms prior
findings [17] indicating that a high portion of the data on the LOD cloud changes.

To provide better insights into how changes are distributed over the data sources,
we randomly sampled an arbitrary point in time (June 1st, 2014) and check for the
distribution of triples over data sources. We observe that most of the data sources,
78.3%, are small (containing less than 1,000 triples) and they contribute only 0.5%
of all triples retrieved at this point in time. The few big data sources (0.6%) that are left
(up to 1,000,000 triples), contribute more than 49.2% of all triples. Furthermore, we
observe that most of the changes (66.7%) take place in the data sources with more than
1,000,000 triples.

2 For sake of consistency, we use only the kernel seeds of LOD documents
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4.2 Evaluation Methodology

Ideally, scheduling strategies should prioritize an update of data sources which provide
modified data. Note, that we do not consider the task of discovering new data sources
for inclusion into the data cache. Rather, we want to maintain an as fresh-as-possible
local copy of a fixed predefined set of LOD sources. To be able to evaluate different
scheduling strategies, we use the following scenarios:

Single-Step We evaluate the quality of update strategies for a single and isolated update
of a local data cache, i. e., starting from a perfectly accurate data cache at time ti,
our goal is to measure which quality can be achieved with different update strategies
at time ti+1, for varying settings of bandwidth limitations.

Iterative Progression We evaluate the evolution of the quality of a local data cache
when considering iterative updates over a longer period of time, i. e., starting from
a perfect data cache at time ti, our goal is to measure how good is an update strategy
in maintaining an accurate local copy at subsequent points in time ti+1, ti+2, ..., ti+n

when assuming a fixed bandwidth. In our experiment, we consider four iterations.

We implemented update strategies based on rankings according to the features pre-
sented in Section 3.2:

1. Age updates from the last to the most recently updated data source.
2. Size-SmallestFirst updates from the smallest to the biggest data source.
3. Size-BiggestFirst updates from the biggest to the smallest data source.
4. PageRank updates from the highest to lowest PageRank of a data source.
5. ChangeRatio updates from the most to the least changed data source based on set

difference applied to the last two retrieved versions of the data.
6. ChangeRate-J updates from the most to the least changed data source based on

Jaccard distance applied to the last two retrieved versions of the data.
7. ChangeRate-D updates from the most to the least changed data source based on

Dice Coefficient applied to the last two retrieved versions of the data.
8. Dynamics-J updates from the most to the least dynamic data source based on Jac-

card distance and previous observed snapshots of the data.
9. Dynamics-D updates from the most to the least dynamic data source based on Dice

Coefficient and previous observed snapshots of the data.

Please note that we analyze the strategy Age only for the Iterative Progression scenario.
Age cannot be used in the Single Step scenario. Since we build the follow-up copy from
a perfect local copy, the feature Age would assign the same value to each data source.

The data features used by the strategies are extracted based on the available history
information. In our experiment, the history is composed of the last four updates. In the
first setup, the task to be accomplished by the strategies is to compute an update or-
der for all data sources at the point in time ti+1. For the strategies Size and PageRank,
we use information about data retrieved from the last update time ti. ChangeRatio and
ChangeRate are calculated over the last two updates ti−1 and ti, and Dynamics is calcu-
lated over the complete history for points in time ti−4 to ti. For the Iterative Progression
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setup, we start with a perfect data cache at ti. The task is to compute the updates itera-
tively at the next points in time ti+1 to ti+4. In the first step, the history setup is the same
as the single-step setup and the size of the history increases along with the iterations.

In order to make the results of the different setups comparable, and due to the fact
that the iterative setup considers four iterative updates, the snapshots used in the single
step evaluation are the same ones which are evaluated in the first place in the iterative
evaluation setup (every fifth snapshot of the dataset). Additionally, we simulate network
constraints by limiting the relative bandwidth, i. e., that only a certain ratio of triples
can be fetched for updating a local copy at a given point in time. In the simulation, we
stepwise increase the bandwidth constraint from 0% to 5% in intervals of 1%, from 5%
to 20% in intervals of 5%, and from 20% to 100% in intervals of 20% of all available
triples.

LOD sources are from time to time unavailable, i. e., some LOD sources cannot be
reached by any application at a certain point in time, but may be again reachable at a
later point in time. Nevertheless, the implemented strategies do not differentiate whether
a source is unavailable for a period of time, or is deleted from the cloud. Whenever a
LOD source is deleted or unavailable at point in time ti, no triples are delivered and the
empty set is considered for further computations.

4.3 Metrics

The quality of an update strategy is measured in terms of micro average recall and
precision over the gold standard, i. e. the perfect up-to-date local copy:

pmicro(X
′
t, Xt) =

∑
c∈CX′t |Xc,t ∩X ′c,t|∑

c∈CX′t |X ′c,t|
(13)

rmicro(X
′
t, Xt) =

∑
c∈CX′t |Xc,t ∩X ′c,t|∑

c∈CX′t |Xc,t|
(14)

4.4 Results

Single-Step Evaluation Figure 2(a) and Figure 2(b) show the average precision and
recall over all snapshots the single-step setup. The x-axis represents the different levels
of constraints of relative bandwidth (in percent) and the quality in terms of precision
and recall is placed on the y-axis. We observe that precision ranges from 0.862 to 1 and
recall from 0.892 to 1 for bandwidth from 0% to 100% (see Figure 2(a) and Figure 2(b)).
This implies that if no updates are executed (no bandwidth is available), our dataset is
on average 87% correct (F measure) after one update. This value can be interpreted as
the probability to get correct results when issuing an arbitrary query on the data.

Overall, the Dynamics strategies outperform all other strategies. First, we look at
the precision curve. For very low relative (see Figure 1(a)) bandwidth (from 0% to
10%) the Dynamics strategies perform best, followed by the ChangeRate strategies.
Already only with 3% available bandwidth, precision improvements is from 0.862 to
0.873 for Dynamics, and to 0.869 for ChangeRate. With 10% bandwidth the improve-
ment gets to 0.888 for Dynamics and 0.879 for ChangeRate while the third best strategy,
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(a) Precision (b) Recall

Figure 1. Quality Outcomes for the Single Step Setup Setup at Low Bandwidth Level (5%).

(a) Precision (b) Recall

Figure 2. Quality Outcomes for the Single Step Setup

SmallestFirst, achieves 0.877 and the others strategies do not achieve scores higher than
0.862. For the higher relative bandwidths, the ChangeRate and Dynamics strategies are
comparable and show only small differences in performance. Turning to recall (see
Figure 1(b)), ChangeRate and Dynamics perform quite similar over the entire interval
and clearly outperform all strategies and all bandwidth constraints. For even only 15%
bandwidth available, the recall values are above 0.957 while all other strategies achieve
at most 0.93.

LOD sources vary in their sizes. As shown, most of the big data sources change
frequently and, consequently, they are in the top ranked entries for strategies such as the
Dynamics and ChangeRate. Also, some of the smaller data sources have a high change
frequency. Therefore, in the ranking list provided by the Dynamics and ChangeRate
strategies, a mix of big and small sources can be found in the top entries. For strategies
such BiggestFirst and ChangeRatio only/most of the biggest sources are top ranked. In
contrast, by the strategy SmallestFirst only the smallest sources are top ranked. When
updating the smallest data sources first, even for a very small bandwidth, a great number
of data sources can be fetched and consequently data changes can also be retrieved.
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(a) Precision (b) Recall

Figure 3. Quality Outcomes for the Iterative Progression Setup at Low Bandwidth Level (5%).

This can be observed in the recall curve of the SmallestFirst strategy. When only low
bandwidth is available, it is not possible to fetch data from big data sources since there
is not enough bandwidth. This can be clearly seen for the BiggestFirst strategy, where
updates are observed only when 20% or more is available. The more bandwidth is
available, the more changes can be retrieved. Due to the mix of data sources sizes in the
ranking list of the Dynamics and ChangeRate strategies, they are able to retrieve already
data when only a very small bandwidth is available and overall are able to retrieve more
modified data than the other strategies for all bandwidths. The others strategies narrow
in quality when more bandwidth is available.

In general, the single-step experiments show that update strategies based on dynam-
ics followed by change rate make best use of limited resources in terms of bandwidth.
For very low relative bandwidth, the strategies based on data source dynamics tend to
provide better results.

Iterative Progression Evaluation In this evaluation, we look at the evolving quality
when considering iterative updates. This setup simulates real use case scenarios such
as of a LOD search engine continuously updating its caches. In our experiments, we
look how precision and recall behave over the iterations. First, we fix the bandwidth
constraints. We choose a low (5%), mid (15%), and high (40%) bandwidth which pro-
vided low, average, and good outcomes based on the previous experiments (single-step
evaluation).

Figure 3(a) and Figure 3(b) show precision and recall for bandwidth fixed at 5%.
The x-axis represents the iterations (points in time) and the y-axis the quality in terms of
precision and recall. Note that quality decreases along the iterations. This is expected,
since only at the first iterations the update process starts from a perfect data cache. For
low relative bandwidths, the impact on the (loss of) quality of iterative updates is quite
similar for all strategies. Nevertheless, the plot confirms the previous discussion that
the Dynamics strategies followed by ChangeRate are the more appropriate ones, if we
need to predict the next best steps (and not only the first step anymore). Nevertheless,
the strategies show a uniform loss of quality.
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(a) Precision (b) Recall

Figure 4. Quality Outcomes for the Iterative Progression Setup at Mid-Level Bandwidth (15%).

(a) Precision (b) Recall

Figure 5. Quality Outcomes for the Iterative Progression Setup at High-Level Bandwidth (40%).

A similar output is observed for bandwidth fixed at 15% (see Figure 4(a) and Fig-
ure 4(b)). Here again, fetching data from the source that changes more than others
ensure more accurate updates. Even if we can observe that the loss of quality is com-
parable, the Dynamics strategies followed by ChangeRate maintain a higher level of
quality after the four iterations. Dynamics precision and recall decreases from 0.92 to
0.846 and 0.953 to 0.929 and ChangeRate from 0.908 to 0.841 and 0.939 to 0.918 after
the four iterations, while the quality of the other strategies are mostly lower after only
one or even no iteration.

Precision and recall under a relative high bandwidth (fixed at 40%) is shown in Fig-
ure 5(a) and Figure 5(b). The recall values of the Dynamics strategies and ChangeRate
almost not change over the iterations (above of 0.947). The precision values decrease
with a maximum of 0.889. Over all iterations, these strategies outperforms all the oth-
ers even when only one-step update is applied. Interestingly, at this bandwidth level,
the strategies which fetch data from the big data sources first show good performance
since—up to that bandwidth level—it is possible to load a big data source entirely. As
most changes concentrate in the big data sources, they are also able to fetch most of the
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changes. For instance, precision and recall of the ChangeRatio strategy reaches values
of 0.888 and 0.923, respectively, after the iterations.

Overall, the results of this experiment setup confirms the discussion from the previ-
ous one, i. e, the strategies based on the dynamics features followed by the ones based on
change rate are the more appropriate ones if we need to predict (iterative) updates. Cer-
tainly, the more bandwidth is available, the more changes can be grabbed (and therefore
the rate of quality lost over the iterations is lower for all strategies). Still even after four
iterations, Dynamics strategies (followed by ChangeRate) were able to better maintain
an up-to-date local copy for all different bandwidth levels. From our experiments and
for low relative bandwidth, these strategies could definitely better support applications
to fetch the most changed data (and thus to avoid to fetch unchanged data) than the
other strategies.

5 Related Work

The evolution of the Web has been observed in [5] in order to obtain implications of
changes on incremental Web crawlers. Incremental crawlers update local data collec-
tions if they recognize influencing changes. Likewise, the dynamics of Web pages is
empirically analyzed in [7,3] with a dedicated focus on the update frequencies of search
engine indices. Estimations for changes of data items and elements are proposed in [6].
Such estimations are used if the history of changes is incomplete, e.g., it is known that a
Web page has changed but it is not known how often it has changed in a certain period.
Various related work have investigated the characteristics of the LOD cloud. Their goal
is to apply these characteristics for the purpose of different applications such as query
recommendation and indices updates. Some works conducted structural analysis of the
LOD cloud such as [2,15,1] in order to obtain statistical insights into the characteristics
of the data. In addition, there is related work on analyzing the LOD cloud in order to
verify its compliance with established guidelines and best practices how to model and
publish data as Linked Data [16,22]. Other works as by Neumann et al. [19] analyze
LOD in order to obtain statistics like its distribution in the network.

Among those works that are dedicated on the study of the Linked Data dynamics,
with a dedicated focus on the update frequencies of LOD search engine indices, Um-
brich et al. [23] compare the dynamics of Linked Data and the dynamics of Linked
datasets with HTML documents on the Web. Their change detection uses (i) HTTP
metadata monitoring (HTTP headers including timestamps and ETags), (ii) content
monitoring, and (iii) active notification of datasets. These three detection mechanisms
are compared by several aspects like costs, reliability, and scalability of the mecha-
nism. Similar to our approach, the content monitoring applies a syntactic comparison of
the dataset content, i.e., a comparison of RDF triples (but ignoring inference). Change
detection is a binary function which is activated whenever changes are found. In our
evaluation, we consider more complex change metrics to allow fine-grained ranking.

The importance of caching for efficient querying linked data is analyzed by Hartig
et al. [14]. Query execution is based on traversing RDF links to discover data that might
be relevant for a query during the query execution itself. Data is cached and it is used for
further queries. Caching show some beneficial impact to improve the completeness of
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the results. Additionally, Umbrich et al. [24] proposed a hybrid approach for answering
SPARQL queries, i. e, deciding which parts of a query are suitable for local/remote
execution. The authors estimate the freshness of materialized data using the notion of
coherence for triple patterns against the live engine. Dehghanzadeh et al. [8] extend this
approach by extending the statistics of cardinality estimation techniques that are used
in the join query processing phase.

The Dynamic Linked Data Observatory is a monitoring framework to analyze dy-
namics of Linked Data [17]. Snapshots of the Web of data are regularly collected and
then compared in order to detect and categorize changes. Using these snapshots, the
authors study the availability of documents, the links being added to the documents,
and the schema signature of documents involving predicates and values for rdf:type and
determine their change rate. Motivated by this work, Dividino et al. [11] analyzed the
changes on the usage of the vocabulary terms in the DyLDO dataset. The authors show
that the combination of vocabulary terms appearing in the LOD documents changes
considerably.

6 Conclusion

In this paper, we propose and evaluate scheduling strategies for updating on a large-
scale LOD dataset that is obtained from the cloud by weekly crawls over the course
of three years. In a first setup, where we evaluate the quality of update strategies for a
single and isolated update of a local data cache, we observe that update strategies based
on dynamics or change rate make best use of limited resources in terms of bandwidth.
For very low relative bandwidth, the strategies based on data source dynamics provide
better results. Already only with 15% available bandwidth, we observed improvements
of precision and recall for dynamics from 0.862 to 0.924 and from 0.892 to 0.957,
respectively.

In a second evaluation setup, we evaluate the behavior of the strategies in a realistic
scenario (e. g., a LOD search engine updating its caches) which involves measuring
the quality of the local data cache when considering iterative updates over a longer
period of time. Overall the results of this experiment setup confirms the discussion
from the previous one. Especially for low relative bandwidth, update strategies based on
dynamics or change rate are more appropriate to support applications to fetch the most
changed data (and thus to avoid to fetch unchanged data) than the others strategies.

In future work, we plan to investigate the impact on the performance when combin-
ing different update strategies. We also intend to consider further evaluation setups such
as the cold start setup, i. e., we measure how good is an update strategy starting from
an empty cache and considering iterative updates over a longer period of time. At last,
we mentioned in this paper that the implemented strategies do not differentiate whether
a source is unavailable for a period of time or is deleted from the cloud. Therefore, we
plan to extend these strategies to consider the availability of the LOD sources over time.
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