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Abstract. Enterprise Collaboration Systems are designed in such a way to max-
imise the efficiency of communication and collaboration within the enterprise.
With users becoming mobile, the Internet of Things can play a crucial role in this
process, but is far from being seamlessly integrated in modern online communi-
cations. In this paper, we showcase the use of a solution that goes beyond today’s
ad-hoc integration and processing of heterogeneous data sources for static and
streaming data, providing more flexible and efficient processing techniques that
can bridge the gap between IoT and online Enterprise Communication Systems.
We document the technologies used for sensor deployment, sensor data acquisi-
tion based on the OpenIoT framework, and stream federation. Our main contri-
butions are the following, i) we present a conceptual architecture of IoT-enabled
Communication Systems, that builds upon existing frameworks for semantic data
acquisition, and tools to enable continuous processing, discovery and federation
of dynamic data sources based on Linked Data; ii) we present a semantic infor-
mation model for representing and linking IoT data, social data and personal data
by re-using and extending the existing standard semantic models; iii) we evaluate
the performance of virtualisation of IoT sources based on OpenIoT in our testbed
and show the impact of transmission, annotation and data storage, as well as ini-
tial results on scalability of RDF stream query processing in such a framework,
providing guidelines and directions for optimisation.

Keywords: IoT, RDF Stream Processing, Stream Federation, Communication
Systems, OpenIoT, Linked Data

1 Introduction

Enterprise communication systems currently and historically have been primarily aimed
at person to person communication. Users of such systems typically interact with an
endpoint such as a phone, video system or unified communications software client capa-
ble of multi-modal communications. Communication modes typically consist of instant
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messaging, voice, video and voicemail to allow individuals or groups to communicate
in real time. Such systems have not historically enabled open machine to machine or
machine to person communication. The emergence of Internet of Things (IoT) provides
the potential to enable communication between sensory devices and communication
systems using open interfaces, but this potential is under investigated and few solutions
have existed in isolation. As a result, the flexible integration of a large amount of multi-
modal data streams from diverse application domains is still one of the key challenges
in developing IoT-enabled communication systems.

The lack of interoperability results into the inability for such systems to integrate
information from external sources in an easy and cost-effective way. This issue be-
comes more evident if we consider advances in the IoT space, which demands dynamic
and flexible exchange of information between IoT sources. To overcome these inter-
operability issues in communication systems and across smart enterprise applications
towards IoT-enabled solutions, we developed a Linked Data infrastructure for network-
ing, managing and analysing streaming information. In order to ensure high reusability,
we leveraged existing semantic models for the annotation of sensor data (e.g. SSN),
social web (e.g. FOAF) and personal information (e.g. PIMO), and extended the onto-
logical model to incorporate personal, business and online communication concepts.

In order to set the basis for our evaluation, we identified a usecase scenario in the
enterprise communication space, to illustrate the potentials of IoT-enabled Communica-
tion Systems. We then designed and developed the processing pipeline from IoT sources
to stream processing and reasoning, which is seamlessly integrated in our framework.
Our main contributions in this paper include:

– design of a Linked Data framework for IoT-enabled smart enterprise applications
that connects physical to virtual sensors and enables scalable stream processing and
reasoning;

– interoperable integration of various IoT sources (corresponding to capabilities) in
the context of an open source online communication system;

– demonstration of the effectiveness of our proposed framework based on a concrete
instance of OpenIoT and Apache Open Meetings;

– experimental validation of the performance and scalability of our IoT-enabled in-
frastructure and lessons learned.

The remainder of this paper is organised as follows: Section 2 presents our scenario
and state of the art, Section 3 details our IoT-enabled Linked Data infrastructure and it’s
software components, which we evaluate in Section 4 before we conclude with some
remarks and lessons learned in Section 5.

2 Motivation and State of the Art

Sensor technologies and sensory devices are nowadays part of our everyday lives. The
Internet of Things (IoT) not only provides an infrastructure for sensor deployment, but
also a mechanism for better communication among connected sensors. Data generated
by these sensors is huge in size and continuously produced at a high rate. This requires
mechanisms for continuous analysis in real-time in order to build better applications and



services. Data streams produced by various sensors can be classified into three different
categories, namely, (i) Physical (static) Sensors, (ii) Mobile & Wearable Sensors, and
(iii) Virtual Sensors & Social Media Streams.

Among the above three categories, mobile sensors are harder to integrate within
enterprise communication systems. This is not only due to technical integration issues
and interoperability, but also due to their dynamic nature and constantly changing con-
text. Mobility and location-based sensory input, for example, result into a higher level
of unpredictability and lower level of control over the distributed infrastructure that
characterises enterprise communication systems. These challenges are matched by new
opportunities for IoT-enabled collaboration and communication systems to be designed
in order to sense the context of a mobile user and take decisions according to dynamic
sensory input. In the domain of enterprise communication systems, mobile users have
the potential to produce a lot of dynamic sensory input that can be used for the next
generation of mobile enterprise collaboration, with great potentials for better user ex-
perience. In this paper we propose a framework and a set of software component for
IoT-enabled online meeting management that combine existing technologies in a scal-
able infrastracture.

2.1 Motivating Scenario: IoT-enabled Meeting Management System

Alice is hosting an online meeting for her company FictionDynamic. The meeting is
planned to hold in Meeting Room B at 11:00 am. Bob and Charlie attending the meet-
ing while they are on the move, thus their availability and ability to participate to the
meeting in various ways is dynamically changing. The IoT-enabled Meeting Manage-
ment System (IoT-MMS) enables i) automatic on-the-fly semantic enrichment of IoT
information related to the meeting attendees, ii) communication of such richer informa-
tion to the participants via their IoT-MMS client through a panel showing IoT values and
related user capabilities (e.g. ability to hear properly, share a screen, type, talk), iii) use
of such rich information to improve user experience and optimise meeting management
on-the-fly. The integration of a web-based MMS with sensory input and enterprise data
such as attendees details, calendars and agenda items makes it possible to characterise
and manage the following aspects in a flexible and interoperable way:

– updating (enabling or disabling) users capabilities based on IoT input (via sensors
abstraction and interpretation, semantic integration and stream query processing);

– managing agenda items, including users involved and capability requirements via
business logic rules;

– dynamically verifying privacy-constraints on agenda items based on location and
context.

In Sections 3 and 4, we illustrate the design and implementation of our IoT-MMS frame-
work enabling characterisation and management of the above mentioned aspects.

Enabling and disabling user capabilities has the potential of improving user experi-
ence: acting on microphones and speakers of attendees based on their participation and
the level of noise can avoid unpleasant feedback loops, and guidance for the meeting
host on changing capabilities of attendees on the move would promote more effec-
tive management of online meetings. In the same way as capabilities are enabled or



disabled, additional functionalities can be characterised by adding specific semantic
queries and action triggers. For example, the IoT-MMS can support the meeting host in
dynamically re-assigning agenda slots to participants, based on users involved and their
changing capabilities. Also, queries over the attendees calendars and presence status
[10] for availability would make it possible to suggest alternative meeting slots if key
attendees become unavailable or if their capabilities become compromised.

2.2 State of the Art

Internet of Things (IoT) research in recent years has focused on modelling domain
knowledge of sensor networks and services [3, 12, 4, 16]. The Semantic Sensor Net-
work (SSN) ontology is one of the most significant efforts in the development of an
information model for sensory data [6]. The SSN Ontology provides a vocabulary for
expressive representation of the sensors, their observations and knowledge of the sur-
rounding environment3. SSN is being widely adopted by many IoT-based applications
for the representation of sensor data. SSN ontology defines only a high-level scheme
of sensor systems, therefore SSN alone cannot represent an information model for a
richer IoT infrastructure and needs to be aligned with the existing ontologies or with
new concepts from application domains. Consider our scenario in Section 2.1, the SSN
ontology needs to be aligned with existing semantic models for the representation of
the meeting/calendar information and personal/social data.

Data acquisition from distributed heterogeneous sensors is another essential aspect
of IoT-enabled applications. The Global Sensor Network (GSN) middleware facilitates
flexible integration and discovery of sensor networks and sensor data [1], enabling fast
deployment and addition of new IoT platforms by supporting dynamic adaptation4. X-
GSN [5] is an extension of GSN and therefore supports all virtual sensors and wrapper
developed for the GSN middleware. X-GSN is deployed as a web server which con-
tinuously listens for sensor data over a pre-configured port (default port = 22001), and
it contains various wrappers built as subclasses of the GSN wrappers, each acting as a
thread in the GSN.

OpenIoT [2] is an open source middleware for collecting information from sensor
clouds. OpenIoT can collect and process data from virtually any sensor in the world,
including physical devices, sensor processing algorithms and social media processing
algorithms (http://openiot.eu). OpenIoT combines and enhances results from leading
edge middleware projects, such as the Global Sensor Networks - GSN and the Linked
Sensor Middleware5(LSM) [9, 1].

However, IoT-enabled applications not only require to gather sensor data from dis-
tributed sensors network, but also demand to provide adaptive applications which can
query data streams generated by sensors and can take smart decisions accordingly.
Furthermore, IoT-enabled applications need to provide robustness because of the au-
tonomous and distributed nature of the underlying architecture. OpenIoT in its current

3 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
4 http://sourceforge.net/projects/gsn/
5 http://lsm.deri.ie
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Fig. 1. IoT-Enabled Communication System Architecture

state does not support stream query processing over data streams generated by vari-
ous sensors, hence lacking the ability to facilitate realtime decisions. We used the Ope-
nIoT framework for sensor data acquisition and semantic annotation, creating additional
wrappers that are needed for streaming IoT data, and we extended it by introducing
stream query processing [8] and stream reasoning capabilities based on rules [11].

3 IoT-enabled Communication Systems

In this section, we introduce the layered architecture of the IoT-enabled Communication
System and briefly describe each of the layers involved in the processing pipeline.

3.1 Application Architecture

Figure 1 illustrates our conceptual architecture for IoT-Enabled Communication Sys-
tem. OpenIoT acts as a core component for data acquisition and semantic annotation



of the data produced by various sensors. We extended the functionalities of the Ope-
nIoT platform by introducing HTTP Listener wrapper for capturing streaming data,
and semantic querying and reasoning layer, which allows IoT-enabled communication
systems to include semantically annotated data streams produced by sensors as an addi-
tional source information. IoT-enabled Communication Systems can perform real-time
continuous queries over data streams and consume the results of these queries to take
context-aware and user-centric decisions in real-time. As shown in Figure 1, there are
three main layers involved in our IoT-enabled Enterprise Communication System archi-
tecture, namely (i) Data Acquisition and Semantic Annotation Layer, (ii) Stream Pro-
cessing and Reasoning Layer, and (iii) Application Layer. Below, we further elaborate
on each of these layers and their components.

3.2 Data Acquisition and Semantic Annotation Layer

This layer is mainly responsible for acquiring sensor data from mobile devices and
performing semantic annotation of the acquired data using our information model. We
briefly discuss each of the components and their functionalities.

Data Acquisition

Our proposed architecture can acquire data from any type of sensor, whether it is phys-
ical sensor deployed at a fixed location, a mobile sensor or even a virtual sensor repre-
senting virtual data streams (e.g. social media data streams). However, considering the
IoT-MMS scenario presented in Section 2.1, we focus on data acquisition from mobile
sensors only.

Mobile Application for Data Acquisition: In order to receive data from various mobile
sensors, we developed an android base application which can continuously sense the
information from a mobile device. Once, the application is launched, a registered user
can choose the sensors for which he/she wants to share the data. Data produced by the
selected sensors is continuously sent to the OpenIoT server.

Sensor Registration: A sensor is considered as a basic entity in the OpenIoT plat-
form. Each and every sensor participating within the framework should be registered in
the OpenIoT Platform before sending any observation. Sensors are uniquely identified
within the OpenIoT platform by assigning a unique id. Mobile devices are registered as
platforms (ssn:platform6), which can host multiple sensors. During the sensor registra-
tion process, some meta information (e.g. type of sensor, owner of the device, sensor
observation unit etc.) is acquired. Sensors can be either registered individually and as-
sociated to an individual user or they can be registered in bulk if multiple sensors have
the same meta information attached to them.

Sensor Observations Transmission: Whenever a sensor is successfully registered in
the OpenIoT platform and the mobile application for data acquisition is launched using
any mobile device, all the selected sensors on that particular device start transmitting
their observations to the OpenIoT platform. Our processing pipeline makes it possible

6 http://purl.oclc.org/NET/ssnx/ssn#Platform
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to select and de-select sensors dynamically without re-launching the application. We
developed an X-GSN wrapper for mobile data acquisition, which is deployed over the
X-GSN Server. As shown in Figure 1, the Http Listener is an integral part of the X-
GSN Wrapper which continuously listens for the sensor observations. As soon as any
observation is received, this layer starts processing the data accordingly using meta
information of that particular sensor from which the observation is acquired. X-GSN
also includes a Streaming Channel component which publishes semantically annotated
RDF streams.

Semantic Annotation

We reused and integrated different semantic models for the representation of all ac-
quired information in our IoT-MMS scenario, including sensor metadata, sensor obser-
vation, meeting/event data, meeting attendees and their capabilities. Linked Data rep-
resentation allows for easy integration of semantic information collected from hetero-
geneous data streams as well as integration with static knowledge to perform querying
and reasoning.

Semantic Annotation of Sensor Data Streams: We used the SSN ontology for rep-
resenting sensors, their observations, and their platform (mobile device). The OpenIoT
platform carries out annotation of the virtualised data streams that have been provided
by the X-GSN data wrappers. We used an information model to explicitly define seman-
tics of sensory data such as sensor types, models, methods of operation and common
measurement definitions. As a result, sensor capabilities can be defined in accordance
with existing conditions and be integrated as Linked Data. This helps bridging the gap
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between real-time information generated from various independent data sources and
a huge amount of interconnected information already available over the Web. For ex-
ample, sensors and their data can be linked to geographic data (e.g. correlated natural
phenomena), user-generated data (e.g. Meeting Data), and some implicit information
(e.g. user profiles, calendar) through our semantic driven approach.

Semantic Annotation of Application Users and Mobile Devices: SSN is a de-facto
standard for semantic annotation of sensor data streams. However, it still lacks the in-
formation to associate data generated from the sensors with any particular owner or user
of that particular sensor. Keeping the usecase scenario of the IoT-MMS in mind, we rep-
resent the mobile client user as an owner of sensors embedded in the particular mobile
device the user has used to log-in to the IoT-MMS mobile client. We used the NEPO-
MUK Contact Ontology (nco) [7] to represent a user and his/her contact information,
while we used Digital.Me Device Ontology (ddo) to associate a device with any partic-
ular user [15]. As described earlier, multiple sensors embedded within a single mobile
device can be easily represented using ssn:platform concept. Figure 2, depicts the infor-
mation model for integration/linkage of sensor data with the contact information of the
user as well as the device hosting that particular sensor. Each device can have multiple
capabilities (e.g. noise, light, proximity) depending on the available sensors embedded
within the device.

Semantic Annotation of Meeting Data: We used the NEPOMUK7 and related se-
mantic desktop ontologies8 for semantic representation of meetings, their description,
organiser, list of attendees, location, starting time and duration [14]. NEPOMUK Calen-

7 http://nepomuk.semanticdesktop.org
8 http://www.dime-project.eu



dar Ontology (ncal) is used for semantic annotation of the meetings created by any user
of the IoT-MMS. Figure 3 gives an overview of the information model for the semantic
annotation of meeting data.

3.3 Stream Processing and Reasoning Layer

One of the most important factors for IoT-enabled applications is their ability to detect
events within minimal time delay. The Stream Query Processing component -shown
in Figure 1- enables to continuously query sensor data streams and detect events in
realtime, while the Stream Reasoning component contains application logic to make
smart decisions customised to the particular requirements and context of the user.

Stream Query Processing: We integrated the CQELS (Continuous Query Evaluation
over Linked Streams) query engine for the execution of continuous queries over seman-
tically annotated data streams of mobile sensors [8]. CQELS is a state of the art stream
query processing engine for RDF data streams, which allows to register queries over
sensor data streams. Once a query is registered, CQELS continuously monitors sensor
data streams and produces a stream of results matching the query patterns. Listing 1,
shows a CQELS query to monitor the noise level of a certain user of the IoT-MMS.

Stream Reasoning: This components consumes the stream generated as a result of
the CQELS queries and facilitates smart decisions by associating patterns of events
to actions. This is modelled using event-condition-action (ECA) rules in AnsProlog,
where the events are triggers for actions to be executed. For example, results of the
CQELS query in Listing 1 can be used by the stream reasoning component to trigger a
rule that, based on the noise level, mutes a single or multiple users whenever noise level
surpasses the specified threshold, and different thresholds can be dynamically selected
based on indoor or outdoor user location. Similarly, rules can be used to suggest changes
to the agenda when the associated attendee is late or temporarily disconnected, or to
warn attendees on certain privacy threats when they are in a public place like an airport
lounge or a train.

p r e f i x r d f : <h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns#>
p r e f i x s s n : <h t t p : / / p u r l . o c l c . o rg /NET/ s snx / s s n#>
p r e f i x lsm : <h t t p : / / lsm . d e r i . i e / o n t / lsm . owl#>
s e l e c t ? n o i s e V a l u e

WHERE {
STREAM <h t t p : / / lsm . d e r i . i e / r e s o u r c e /1409752298064700000> [RANGE 5 s ]
{
? ob 5 r d f : t y p e s s n : O b s e r v a t i o n .
? v a l u e 5 s s n : o b s e r v e d P r o p e r t y <h t t p : / / lsm . d e r i . i e / r e s o u r c e /1409752298163783000 > .
? ob 5 s s n : f e a t u r e O f I n t e r e s t ? f o i .
? v a l u e 5 lsm : i s O b s e r v e d P r o p e r t y O f ? ob 5 .
? v a l u e 5 lsm : v a l u e ? n o i s e V a l u e .}
}

Listing 1. A Sample CQELS Query to Monitor Noise Level

3.4 Application Layer

This layer represents the class of enterprise applications that can benefit from IoT in-
telligence which we showcase using our IoT-enabled Communication System based on
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Apache OpenMeetings. We extended the OpenMeetings server to generate semantically
annotated data and to communicate with the reasoning component of our framework by
continuously observing the status of relevant sensors generated by the stream process-
ing layer and take appropriate actions at the application layer.

In what follows, we describe the process flow of our IoT-enabled OpenMeetings
extension and illustrate the concepts and implementation of our online Meeting Man-
agement solution.
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OpenMeetings (OM) is an open source software used for web conferencing, collabo-
rative white board drawing, document editing etc. It uses OpenLaszlo RIA framework
for client side generation and Red5 streaming server for remoting and streaming. In a
physical conference room it can use Real-Time Messaging Protocol (RTMP) for high
performance transmission of video, audio and data between Flash and the server. RTMP
is a TCP based protocol which keeps the persistence connection and allows low latency
communication.

Meeting Management in online communication and collaboration systems like Open-
Meetings is enhanced with IoT input using our framework. In order to do that, the status



of sensors registered on the IoT platform is monitored by the Stream Reasoning com-
ponent, which identifies their status and determines appropriate actions based on rules.
The sensors we considered include noise, proximity, light and location, while the ac-
tions are related to changing the status of a set of capabilities. Capabilities illustrate
real-time availability of the participants to perform certain actions including talking,
listening, reading a display or typing, and they are represented in the application con-
trol panel as a new set of IoT-related icons. Based on thresholds on the value of readings
from specific IoT sources, the status of these icons is automatically updated from green
to red or vice versa, indicating whether a participant can perform the corresponding ac-
tivity or not. This provides the meeting host with updated information on the capability
of the attendees, and can further be used to act on specific actuators (e.g. muting a mi-
crophone). For example, the ability to read the screen is not active if a user is connected
via phone and answers a phone call. Figure 4(A) shows a client with all capabilities
active, while Figure 4(B) shows the configuration for a mobile user surrounded by a lot
of noise and talking on the phone. Location can also be used to trigger privacy related
rules (e.g. prompt a warning, if a user is in a call with a customer in public spaces like
airport lounges).

The IoT-enabled OpenMeetings Process Flow is illustrated in Figure 5. When a re-
mote client (RC) connects to an online conference in OpenMeetings, the server creates
a Real Time Messaging Protocol (RTMP) connection and it registers as a web-socket
client endpoint. Semantic information related to the client and the IoT sources is re-
trieved, and semantic queries are automatically generated to monitor updates of sensory
input from that client. The server also subscribes to these queries, and when sensory
updates are detected, the Stream Reasoning component processes them by consuming
events as they are produced and applies the rules to determine which action should be
executed in the client application, returning results as a JSON object to the correspond-
ing web socket clients. Based on these results, the web socket client calls a remote
method of its remote client and changes the status of the relevant IoT icons accordingly,
prompting a warning message if required.

4 Evaluation

We evaluated our proposed architecture mainly by measuring performance and scala-
bility of OpenIoT and query processing within our framework. We believe this is key
for the applicability of our approach, since it demonstrates that semantic technologies
embedded in OpenIoT can be used in this practical system without hindering feasibility
and user experience, and enabling enhanced IoT-intelligence capabilities and business
logic to be deployed by leveraging semantic representations. In the current paper we
focus on the system and the software tools. Next steps would aim at a full in-use appli-
cation in an industry setting. As a result, we aim at a realistic set-up and study that will
provide more in-depth evaluation of usability and user experience.

Performance and scalability are two critical aspects for applications which are de-
signed to adapt and react to changes in near real-time. In this section, we present the
results of our feasibility tests conducted to evaluate the performance and scalability of
our proposed solution. With this evaluation we also aim at demonstrating how semantic



Fig. 6. Different Points for Processing Time Measurements

technologies in IoT can be applied to real scenarios and create a new market for IoT-
enabled solutions like in the collaboration and communication systems space, highlight
what are the main drawbacks and limitations of state-of-the-art technologies such as
X-GSN and OpenIoT in this setting, and provide some suggestions on what key aspects
should be tackled by the research community to make the technology deployable on a
larger scale.

Experimental Setup (Testbed). We deployed our OpenIoT Server over a machine run-
ning Debian GNU/Linux 6.0.10, with 8-cores of 2.13 GHz processor and 64 GB RAM.
Apache OpenMeetings server is installed over a machine with Ubuntu 12.04.5 LTS, 1
core of 2.30GHz and 1 GB RAM, while Android App for sensor data transmission was
installed over a mobile device running on Android OS v4.3 (Jelly Bean), with Dual-core
1.5 GHz Krait and 1GB RAM, supporting Android SDK version 8 to the SDK version
21.

Performance. In order to evaluate the performance of our proposed solution, we ob-
served the processing time required by various components of our infrastructure with
varying size of the sensory stream. We identified various time points of observation to
examine the average time delay for each time point of measurement. Figure 6, illustrates
four time points of measurement, where:

– t1 is the start time when data generated by a sensor is sent.
– t2 is the time when X-GSN receives the data, hence we refer to TT = t2− t1 as to

the the time required by the network to send the data from the sensor to the server
(transmission time).

– t3 indicates the time when the raw data has been processed and stream elements
have been created with time stamp allocation to each sensor observation, hence
SE = t3−t2 is the time needed to create a semantically annotated stream element.

– t4 is the time when semantically annotated stream elements are are successfully
published to LSM, hence DP = t4 − t3 is the time required for publishing the
semantically annotated triples into LSM.



Fig. 7. Average Processing Time with Varying Number of Sensors

Figure 7 depicts the average processing time required to perform the three main
steps of the OpenIoT data processing pipeline, namely, (i) Transmission Time (TT), (ii)
Stream Element Creation Time (SE), and (iii) Data Publishing Time (DP). We speci-
fied an average delay of 0.5 seconds before sending each sensor observation to avoid
overloading the system by concurrent requests (the impact of concurrent requests are
investigated in the scalability analysis). All execution times shown in Figure 7 are the
average of 5 executions. It is evident from the results that there is no significant delay in
the Stream Element Creation and Data Publishing times, despite the increase in num-
ber of sensors from 10 to 10000. Similarly, it is no surprise to see the increase in the
Transmission Time corresponding to an increase in the network traffic.

Scalability. We conducted our scalability test of the OpenIoT framework by sending
concurrent requests with increasing number of users and observed the throughput (abil-
ity to deal with the concurrent users/requests per second) for each of the three phases
of the OpenIoT data processing pipeline, namely (i) Data Acquisition, i.e. the ability of
OpenIoT to receive data from sensors, (ii) Stream Element Creation, i.e. the ability of
OpenIoT to process raw data and assign stream time stamps to each observation, and
(iii) Stream Data Publication, i.e. the ability of OpenIoT to semantically annotate and
publish/store the semantically annotated data within the LSM framework.

We used Apache JMeter 9 for conducting the scalability tests, which is a well known
tool to perform stress tests over distributed web applications. We observed the through-
put of OpenIoT with increasing number of concurrent requests (10,100,1000,5000 and
10000) sent by Apache JMeter with a ramp-up time of (5,50,500,2500 and 5000) ac-
cordingly. We allowed the execution time of 10 minutes after the completion of ramp-up
time. As shown by our results in Figure 8, the throughput for the Data Acquisition phase
remains higher than 200 requests/sec when the input size is 100 concurrent sensor re-

9 http://jmeter.apache.org/
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Fig. 8. Throughput of the Various Components of OpenIoT

quests or below, and it is reduced to around 76 requests/sec with concurrent requests
sent from 10000 sensors. Similar throughput was achieved for Stream Elements Cre-
ation phase. However, the throughput of the Stream Data Publication phase, which is
the ability of OpenIoT to publish the semantically annotated sensor data streams either
to a streaming channel or storing within a data store, seems to be a bottleneck. Increase
in the throughput of the Stream Data Publication phase from 1000 sensor inputs on-
wards, as shown in Figure 8, is a false positive. In fact, a deeper investigation into the
results of Apach JMeter logs revealed that this higher throughput was achieved because
of significant increase in error rate caused by the fact that the LSM server starts refus-
ing connection requests when the number of concurrent users increases beyond 1000.
Further investigation is required in this respect to perform experiments where the noise
generated by refused connections is filtered out.

5 Discussion and Future Deployment

In this paper, we showcase the applicability of semantic technologies in the IoT space
for enterprise communication on the move. We focused on the advantages and feasibil-
ity of using the OpenIoT framework (extended with continuous query processing and
IoT intelligence) in the Apache OpenMeetings collaboration and communication sys-
tems. We characterised requirements that can produce scalable solutions and issues to
be investigated more carefully.

As discussed in our introduction and scenario description, semantic-based solutions
for IoT in this space can facilitate the deployment of interoperable and flexible IoT-
enabled enterprise applications. The ability to semantically integrate and query static
and dynamic data makes it easier and more cost-effective to add new external sources



and design the business logic (IoT-intelligence) promoting a new market of innovative
services that provide significant advantages over ad-hoc IoT deployment. Semantics
also helps integrating semantic knowledge about a user independently of the applica-
tions producing it (e.g. mobile app for producing sensory input, desktop client for on-
line meeting services, calendar for meeting schedule, etc.) as long as there is a semantic
information model that relates the different pieces of knowledge.

Performance. Results are very positive regarding the use of semantics since there is
very little and linear impact of semantic-related processing in our IoT-enabled Open-
Meetings. The real bottleneck seems to be network traffic, which suggests increasing
bandwidth or clever management of queues in order to improve transmission delays.

Scalability. Test results suggests that the actual acquisition and generation of semantic
streams can manage up to 200 readings per second if the total concurrent requests by
users is not much greater than 100. This could be reasonable in a medium enterprise by
constraining the number of concurrent meetings (or participants) that can be scheduled
on the OpenMeetings server. If we want the processing pipeline to go as far as the
IoT-intelligence goes, we can deal with a much lower throughput of a few (concurrent)
sensory input per second, due to the time required to publish the acquired annotated
sensor data to the stream processing and reasoning layer.

The X-GSN to LSM communication is performed per-observation by default, this is
quite slow and can be very costly when there are a lot of concurrent X-GSN threads (e.g.
concurrent sensory input) to be handled. It is worth mentioning that servlet’s threads on
the server side have been managed without using any optimisation queue, therefore
there is easy margin for improvement. Hence, in order to reduce the impact of the
bottleneck to publish annotated sensor streams to an application channel via LSM, a
possible solution is to either use a cluster version of JBoss hosting X-GSN server, or
to configure a queue in the default implementation of X-GSN that makes it possible to
buffer the observations.

Deployment plan. While acting on the application side is entirely dependent on the type
of application, acting on the X-GSN implementation is related to improving current se-
mantic solutions and we have already triggerred the discussion to list it as a potential
improvement within the OpenIoT developers community. Regarding feasibility for con-
tinuous query evaluation and reasoning, we are currently evaluating an initial testbed
by mocking up 25 simultaneous meetings using our IoT-MMS. Each meeting consists
of 10 attendees including organiser, while 4 type of sensor observations (noise level,
proximity, location and light) were monitored for all mobile users. Initial results show
that our IoT-MMS is capable of generating simultaneous queries over the proposed test
without any substantial performance issues, with similar results as the ones published
for the specific stream processing engine evaluation [13]. Following this simulation, we
will be setting up a deployment for in-use evaluation of our IoT-MMS system within
our partner industry in the next few months, following integration of our solution in a
proprietary online collaboration system. This will make it possible to evaluate usabil-
ity and performances of specific business logic related to online meeting management



events and action triggers, and conduct a proper in-use evaluation not only with respect
to scalability and performance but also usability and impact.
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