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Abstract. Modern industrial automation systems incorporate a vari-
ety of interconnected sensors and actuators that contribute to the gen-
eration of vast amounts of data. Although valuable insights for plant
operators and engineers can be gained from such data sets, they often
remain undiscovered due to the problem of applying machine learning
algorithms in high-dimensional feature spaces. Feature selection is con-
cerned with obtaining subsets of the original data, e.g. by eliminating
highly correlated features, in order to speed up processing time and in-
crease model performance with less inclination to overfitting. In terms
of high-dimensional data produced by automation systems, lots of de-
pendencies between sensor measurements are already known to domain
experts. By providing access to semantic data models for industrial data
acquisition systems, we enable the explicit incorporation of such domain
knowledge. In contrast to conventional techniques, this semantic feature
selection approach can be carried out without looking at the actual data
and facilitates an intuitive understanding of the learned models. In this
paper we introduce two semantic-guided feature selection approaches for
different data scenarios in industrial automation systems. We evaluate
both approaches in a manufacturing use case and show competitive or
even superior performance compared to conventional techniques.

Keywords: Semantic Data Models, Feature Selection, Automation Sys-
tems, Machine Learning

1 Introduction

Processing and mining of large data sets in modern industrial automation sys-
tems is a major challenge due to the vast amount of measurements generated by



several types of field devices (e.g. sensors, controllers, actuators). Deployment of
machine learning models requires upfront feature selection in order to obtain a
reduced feature set, thereby speeding up processing time and preventing overfit-
ting, while still preserving inherent characteristics of the original data. Even in
the age of massively distributed data processing, feature selection remains one of
the main problems in automation, since it is a highly domain expertise-intensive
task [7]. On the other hand, data generated by engineered systems exhibits many
structural dependencies that domain experts are well aware of. This holds es-
pecially for industrial automation systems that are systematically planned and
simulated before going into production. For example, for a given electric mo-
tor, it is documented how torque, speed and power measurements relate to each
other. Thus, there is no need to compute correlations between them for asserting
statistical dependence.

These computations are common in most of today’s feature selection tech-
niques, therefore they exhibit some major disadvantages when applied in high-
dimensional data as observed in today’s automation systems [13]. By accessing
huge proportions of the original data, they quickly become computationally ex-
pensive, plus they are prone to losing valuable information, especially when
transforming the feature space to lower dimensions so that the remaining vari-
ables can no longer be intuitively interpreted. Motivated by the commonly faced
difficulties of a) processing vast amounts of data and b) integrating domain
knowledge into learning models, the semantic guidance approaches of this paper
were developed in order to facilitate what remains the most expertise intensive
task – feature selection.

In general, there are two different types of high-dimensional data that need
to be considered in separation. The first case is present if we are given a huge
number of both features and instances. In this scenario, we argue for an approach,
in analogy to the notion of the usage of OWL 2 QL for ontology-based data
access (OBDA), that makes it possible to perform feature selection on T Box
level rather than instance (data) level [10]. The other case is given when there
are fewer instances than features, also called sparse data (e.g. rare events such
as device failures). For this type of data, embedded feature selection techniques
like Lasso have shown to be very effective [5]. Therefore, we also introduce an
embedded feature selection approach that leverages from engineering background
knowledge in semantic data models. The subsequent sections will describe both
approaches and their application in more detail.

2 Application: Manufacturing Use Case

As an application scenario, consider multiple assembly lines that are part of
a car door production facility. The core of each assembly line is responsible
for welding the window frame and inner door panel, which happens in a semi-
automated fashion, as the actual welding is done by a human worker. The overall
system consists of an automated frame loading station that is responsible for
putting window frames on a conveyor kit. These kits are then routed through the



core assembly process by an electrically-operated conveyor. After the products
have been assembled, they must go through a final quality control that verifies
integrity of certain product characteristics. If quality conforms to specification,
the product is sent to an outgoing packaging station.

Conveyor
Frame Loading 

Station
Quality ControlDoor Assembly Packaging

Product type, weight, 

used material

Motor power, speed, 

torque, temperature

Product Ids, events, 

e.g. material missing

Quality indicators: 

height, width, 

conductivity

Avg. Cycle time, 

events, e.g. finished

product

Fig. 1: Door assembly process and associated measurements

Plant operators are responsible for planning and scheduling of operations
based on incoming orders. For this task, the operators have to assess uncertainties
such as varying cycle times of each produced piece. Since production processes
are of stochastic nature, it is non-trivial to get a solid estimate of the time when
a certain product will be finished. In this case, decision support can be given by
training advanced regression models that help to provide more robust and up-
to-date time estimates. During production, all of the devices (e.g. light-barrier
sensors, power meters, etc.) generate task-specific measurement data as shown
in Figure 1. Today, data collection is agnostic of any machine learning tasks, as
it is merely concerned with high-throughput historic data storage. As far as data
analytics is concerned, any (sub-)set of the measurements taken could possibly
be relevant for the time estimate regression task. A kind of brute-force approach
would be to use all present data and try to train, for example, an ordinary
least squares regression (OLS) model. However, this approach has some major
shortcomings, since the OLS will include irrelevant and redundant information
for fitting its coefficients and is very likely to overfit to particular patterns in
the training data, therefore it is not going to generalize well in a live production
scenario.

Consider the two regression models on the left-hand side of Figure 2 that
try to predict cycle times. In this small example, employing five different pre-
dictor variables causes the model to overfit, while after p-value-based feature
selection we obtain a more smoothed fit using only Conveyor1Time. On the
right-hand side it can be seen how constraining the five predictors by a regu-
larization penalty reduces their coefficients until they are effectively set to zero.
For example, LoadingProductWeight quickly gets eliminated due to its small
effect on the regression task. Since it is known that product weight is part of
the overall weight feature, it could have been removed beforehand without any
computation. Throughout this paper, we will relate to this learning problem of
forecasting product-specific cycle times in an automated manufacturing system
given a huge number of different sensor measurements as a running example.
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Fig. 2: Visualization of multiple linear regression model. Left: Overfitted model
using all predictor variables vs. model after feature selection. Right: Coefficient
values under decreasing regularization penalty

3 Preliminaries

In this section, we first introduce the notion of semantic data models in the
manufacturing domain in 3.1 and how their graph representation is used to
measure structural similarity of feature entities. This is followed by a description
of the general problem of embedded feature selection in linear models in 3.2.

3.1 Semantic Representation of Manufacturing Data

Instead of having yet another information model language, we argue for the us-
age of the well-established Semantic Web standards to create, link, and share
information models of automation systems in the manufacturing domain. For the
purposes of feature selection, we augmented and tailored the Semantic Sensor
Network (SSN) ontology4 to meet the requirements of describing features in au-
tomation data, as can be seen in Figure 3. Here, the Feature concept is modeled
as subclass of ssn : InformationEntity. Resorting to SSN is also beneficial for
manufacturing systems, since devices and processes can naturally be integrated
into its schema. Further details of this feature ontology are given in section 4.1.
The graph representation of RDF-based5 ontologies is a suitable property that
we want to exploit for the description of dependencies between machine learning
features. In formal terms, an RDF graph can be defined as a multi-graph.

4 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
5 http://www.w3.org/RDF/



Fig. 3: Taxonomy of manufacturing feature ontology

Definition 1 (RDF Graph). An RDF graph is a multi-graph G = 〈V,E〉
where each edge ei ∈ E is defined as triple (s,p,o): s, o ∈ V and p is the edge’s
label.

This formal definition allows us to specify the degree of similarity between fea-
ture entities in the graph by means of common structural patterns. Graph kernel
functions have been shown to work well for capturing such patterns. The emerg-
ing field of machine learning in Linked Data has brought up a number of graph
kernel functions particularly designed for RDF graph data.

Definition 2 (RDF Graph Kernel). A graph kernel function is any function
κ : G × G → R s.t. for all Gi, Gj ∈ G satisfies κ(Gi, Gj) = 〈φ(Gi), φ(Gj)〉 is a
valid kernel, where G is the space of RDF graphs and φ is a mapping to some
inner product space.

Given n entities, the graph kernel can be denoted as kernel matrix:

κ =


κ(G1, G1) κ(G1, G2) . . . κ(G1, Gn)
κ(G2, G1) κ(G2, G2) . . . κ(G2, Gn)

...
...

. . .
...

κ(Gn, G1) κ(Gn, G2) . . . κ(Gn, Gn)


In order to get pairwise similarities between all feature entities in our feature
ontology, we can resort to one of the state-of-the-art graph kernels [8]. The idea
of graph kernels is that every entity can be represented as the graph that is



spanned by its adjacent entities up to a certain depth d. Then, similarity be-
tween two graphs is given by some metric, e.g. size of the intersection graph
or pairwise isomorphisms like in the popular family of Weisfeiler-Lehman graph
kernels [3].
In Figure 4 a simplified example of the graph spanned by feature Conveyor1Speed
is shown at different levels of depth d. Data properties of entities like RDF liter-
als (formatted in italic style) are usually considered to belong to their respective
entity and therefore they do not span a new depth level. Clearly, quality of
similarity calculations depends on the amount of knowledge put into the ontol-
ogy creation process. Nevertheless, we expect that already a small number of
annotations can support feature selection.

Conveyor1Speed

Feature

Conveyor1

Conveying
Units

WheelSpeedSensor

FrameLoading

DoorAssembly
Precision

rdf:type

observedAt

precedes

follows

partOf

observedBy

InformationEntity

rdfs:subclassOf

MaxSpeed

d=1

d=2

d=0

Fig. 4: Neighborhood graph of feature Conveyor1Speed at different depth values

Before describing how to exploit this notion of similarity between features in
the training procedure of the manufacturing machine learning models, a general
introduction to learning linear models is given.

3.2 Linear Model Embedded Feature Selection

Linear models are still one of the most popular machine learning models, espe-
cially in domains, where the emphasis lies on insights gained from looking at
the model’s coefficients. For example, the coefficients of the cycle time estimator
regression can be interpreted for decision support in order to take action and



reduce their influence on the overall cycle time. In case of sparse data, embedded
feature selection techniques have shown to be very effective compared to other
conventional feature selection. In the subsequent, we will introduce some stan-
dard formal notation of generalized linear models and their sparsity-inducing
feature selection ability.
Given a training set {xi, yi}ni=1 where xi ∈ Rp is a p-dimensional feature vec-
tor and yi ∈ R is the response, i.e. for regression or classification. We consider
learning a linear model h : Rp → R with h(w) = wTx, where w is a parameter
vector. The general form of the regularized optimization problem is:

argmin
w

l(y, h(w)) + λΩ(w) (1)

Here, l(·) denotes the loss function and Ω(·) is the regularization term, also called
penalty. The value of λ controls how much weight is given to the penalty, which
is used to prevent overfitting of large parameter values. Setting l(·) to the square
loss and Ω(·) to the `1-regularization results in the standard Lasso model:

ŵLasso = argmin
w

(y − h(w))2 + λ‖w‖1 (2)

The `1-norm can be used for embedded feature selection by increasing the
amount of shrinkage (λ) in the Lasso model, which effectively sets non-influencing
components of w to zero.
Due to their embedded feature selection ability, Lasso models have gained in-
creasing attention for learning in sparse data sets, where the number of features
is high, but many of them are irrelevant to the learning task [12]. Furthermore,
in some applications, we want to include prior domain knowledge about rela-
tionships between features, for example if we know that motor speed and torque
are depending on each other, they should also have similar influence (i.e. pa-
rameter weight) on the response variable. When features are represented in a
graph structure, this quality is often called the smoothness property. The notion
is as follows: If we specify relationships between features as undirected graph
G = 〈V,E〉, the graph Lasso (Glasso) can be defined as

ŵGLasso = argmin
w

l(y, h(w)) + λ(α‖w‖1 + (1− α)
∑
i,j∈E

(wi − wj)2)

= argmin
w

l(y, h(w)) + λ(α‖w‖1 + (1− α)wTLw),

(3)

where the second regularization term encourages connected features in the graph
to have similar weights (smoothness). It can be preferably weighted against `1
by decreasing the α parameter. A more convenient formulation of the sum over
squared weight differences is given by wTLw, where L is the Laplacian matrix
of the graph.

4 Approach

This section presents the main technical discussion of the developed semantic-
guided feature selection approach. First, an introduction to concepts and axioms



in the use case feature ontology is given, followed by a description of the seman-
tic feature selection procedure. Ultimately, we present a custom linear model
designed for embedded feature selection in RDF graphs.

4.1 Feature Ontology

There is a wide variety of modeling standards for manufacturing data that are
used to facilitate interoperability of different systems, for example the exchange
of material information between warehouse management and manufacturing ex-
ecution systems. Recent developments of the OPC UA6 standard are concerned
with a unified information model of field device descriptions, PLC programs,
interfaces to enterprise levels such as ERP systems, and many more. Although
these legacy data models describe several facets (e.g. device topologies, sensor
measurements) of manufacturing systems, they are almost solely used for data
exchange without taking advantage of their contained semantics.

Instead of having another custom information model, our approach makes use
of Semantic Web technologies that integrate existing semantics of legacy models
into a unified ontology as shown in Figure 5. On top of the automation system

Fig. 5: Feature ontology on top of automation system legacy models

and its supervisory control and data acquisition (SCADA), a feature ontology is
deployed that represents domain concepts and relations between devices, events
and information entities, such as taken sensor measurements. In this context
feature means any piece of information that could be used as input to a learning
algorithm. From an ontology engineering perspective, this is rather an ad-hoc
modeling approach without strong axiomatization.

6 https://opcfoundation.org/about/opc-technologies/opc-ua/



The result of what we call Semantic Feature Selection, i.e. inference about
feature dependencies on a semantic level (rather than data level), is represented
as RDF graph that contains a task-specific, reduced feature set that is tailored
for consumption by machine learning models. These models are then able to
perform preprocessing, training, and evaluation on the reduced feature set. One
of the goals in development of the feature ontology was to keep the complexity
of reasoning as small as possible so that modeling can be done with one of
the OWL 2 profiles that allow scalable reasoning as the number of features in
the automation system grows. As discussed in section 3.1, the feature ontology
references some concepts defined within the SSN ontology. In addition to that, we
introduce some further relations concerning the connection between processes,
devices and measurements in the manufacturing domain. Most importantly, we
allow generic relations dependsOn and independentOf between features that
subsume specific relations in existing engineering models, in case no further
information is given.
Table 1 gives an overview of important relations that bear semantics for feature
selection purposes. The independence statement is of statistic nature, therefore

Table 1: Main relations of the feature ontology
Relation Description

derivedFrom v
directlyDependsOn

Connects an event or measurement that is derived from an
original source, e.g. threshold overshoot events like

’temperature too high’

follows ≡ precedes−1 Processes or Events that happen in a time-dependent order,
e.g. packaging follows the assembly process

partOf
Partonomy describing device topologies, e.g. temperature

sensor is part of a motor

directlyDependsOn v
dependsOn

A measurement is directly influencing another without
further information, e.g. cycle time directly depends on

failure events

physicalRelation v
directlyDependsOn

Measurements are connected by inherent physical laws, e.g.
current and voltage

apartFrom
Events that happen at different locations, e.g. two assembly

lines operating at separated shop floors

independentOf

A measurement is known to have no (direct) influence on
the other, e.g. product ID does not influence conveyor

motor temperature

observedBy Measurement is sampled by a specific sensing device

observedAt A measurement sampled during a specific process

it is also a symmetric relation based on the fundamental probability theorem
P (X|Y ) = P (X)⇔ P (Y |X) = P (Y ).

The RBox of the feature ontology further specifies some axioms that propa-
gate dependencies through the feature space, as described in Table 2.



Table 2: RBox axioms of the feature ontology

Axiom Description

symmetric(independentOf),
symmetric(apartFrom)

Independence and separation of processes
are defined to be symmetric

dependsOn · observedBy · observedBy−1 v
dependsOn

Dependencies propagate between
measurements observed by the same

sensing device

independentOf · dependsOn v
independentOf

If x is independent of y it is also
independent of anything that y depends on

observedAt · apartFrom · observedAt−1 v
independentOf

Assert independence of measurements
taken at physically separated processes

transitive(partOf), transitive(follows)
Process flows and device topologies are

transitive by nature

4.2 Feature Selection Procedure

Consider that we are given a learning problem of the form y = f(x), where y is
part of the semantic model, such that O |= Response(y), then the feature space
of x can be reduced by excluding everything that is known to be independent of
y. Furthermore, a good choice of features has to include anything that is known
to directly influence the behavior of the response variable. Hence, the T Box is
accordingly augmented with the following axioms:

T =

∃independentOf.Response v ExcludedFeature

∃directlyDependsOn−1.Response v MandatoryFeature

ExcludedFeature u MandatoryFeature v ⊥

Overlap in excluded and mandatory features results in an inconsistent feature
ontology that is most likely due to a feature modeling mistake, since there should
not be independence and direct dependence for two information entities at the
same time.

Algorithm 1 summarizes this schema-level feature selection procedure. First,
the assertion of y as an individual of the class Response must be given. Fur-
ther classification of individuals is done by a standard OWL 2 reasoner (e.g.
HermiT7). In case of an inconsistency, i.e. disjointness of mandatory and ex-
cluded features can not be satisfied, the procedure exits. Otherwise, the sets
of excluded features and mandatory features are collected, respectively. Finally,
the algorithm returns the set of mandatory features and the set of optional fea-
tures for the learning task. Note that this can be done without looking at the
data, but by relying on engineering domain knowledge. After applying Semantic
Feature Selection learning tasks such as cycle time forecasting can be employed
with the reduced set of mandatory and optional features.

7 http://hermit-reasoner.com/



Algorithm 1 Semantic Feature Selection

Input : Learning problem y, feature ontology O, feature space F
Output : Mandatory features Sm, optional subset So
A ← Response(y) . Instantiate response variable
So ← F
Sm ← ∅
if O |= Dis(ExcludedFeature, MandatoryFeature) v ⊥ then

return . Unsatisfiable disjointness, inconsistent ontology
end if
for xi ∈ {x | O |= ExcludedFeature(x)} do
So ← So \ xi

end for
for xi ∈ {x | O |= MandatoryFeature(x)} do
Sm ← xi

end for
return So,Sm

The main advantages of our approach in comparison with common feature
selection procedures are summarized in Table 3.

Table 3: Advantages of semantic feature selection
Criterion Today Our approach

Complexity
Grows with dimensionality

and size of data sets

Grows only with
dimensionality (i.e. new

feature entities)

Re-usage
Need to be re-executed for

every incoming instance
Needs only re-execution if

new features are added

Intepretability
Reducing feature spaces

often loses intuitive
interpretability

Explicitly focuses on
facilitated human

interpretation

4.3 Graph Kernel Lasso

In some cases, data sets of automation systems are sparse. For example, if we
want to forecast cycle times of rarely produced products, there will only be very
few instances available for training. For better learning model performance it
would be beneficial to further consider the semantics of the feature space during
model training. In order to tackle this problem, we present a technique that
integrates semantic dependencies into linear model learning and simultaneous
feature selection.
In contrast to the standard graph Lasso defined in (3), where a relation be-
tween two features is either present or not, i.e. the graph’s adjacency matrix
Ai,j ∈ {0, 1}, we want to use a more enhanced notion of dependencies that also



takes semantics into account. In our application, we use RDF-graph kernels to
capture similarities between entities in the manufacturing feature ontology. In
reference to (3), we therefore define a graph kernel-weighted regularization term
that encourages smoothness between similar entities in the RDF graph of the
feature ontology.

Ω(w) = α‖w‖1 + (1− α)
∑
i,j∈V

κ(Gi, Gj)(wi − wj)2 (4)

where Gi and Gj are the spanned graphs of entities i, j in the vertex set of the
whole RDF graph V and κ is some RDF graph kernel. It is easy to see that the
second regularization term can be expressed as weighted Laplacian Lκ.∑

i,j∈V
κ(Gi, Gj)(wi − wj)2 = wTLκw (5)

with Lκ = diag(r1, r2, ..., rp)− κ, and ri denoting the ith row sum of the kernel
matrix κ. We refer to this model as the graph kernel Lasso (GraKeLasso). Note
that if the kernel matrix is set to the identity matrix, this model is equivalent
to the ElasticNet [14].
As mentioned above, the regularization penalty induces a smoothing, or group-
ing in a sense, that features that are similar with respect to the feature ontology
graph have similar parameter values. Intuitively, if two features are closely re-
lated, e.g. torque and speed measurements of a conveyor motor, they should
have a similar influence (i.e. signal) on the response variable. Additionally, if
one feature turns out to be irrelevant, all its closely related features are also
very likely to be irrelevant. The graph kernel Lasso model enforces both of these
properties.
For our use case application, we can resort to a wide variety of graph kernels,
such as the implementations of the mustard framework8.
A visual representation of the feature ontology graph kernels from our use case
data set is given in Figure 6 (a) for the full feature space on the left-hand side
and (b) for the reduced feature space after semantic feature selection on the
right-hand side. Every feature is represented by a segment on a circle the width
of the chords connecting two features depicts the strength of similarity between
the two. It can be seen that the full feature space contains some very dominant
feature similarities, while the reduced feature space exhibits a more uniform
distribution.

5 Evaluation

To show the value of semantic guidance in feature selection and the custom Lasso
model, we evaluated the performance of forecasting cycle times, as sketched
in the manufacturing use case scenario. The regression models are trained on

8 https://github.com/Data2Semantics/mustard
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Fig. 6: Visualization of pairwise graph kernel weights between features.
(a) Full feature space, (b) Reduced feature space after semantic feature selection

different data sets generated by a discrete-event simulation model that conforms
to the manufacturing process in section 2.

We compare five different regression models for the cycle time estimation
task: Lasso, ElasticNet, Graph Lasso, GraKeLasso, and OLS. For GraKeLasso,
we used a subtree-based variant of the Weisfeiler-Lehman graph kernel, whereas
Graph Lasso incorporates only information about feature individuals connected
via dependsOn, i.e. a simple dependency graph.

Set Up Our simulation set up comprises of a source that generates two different
product types at a specified time interval, each of which has a different distribu-
tion for weight and size. These products are sent to two separated assembly lines,
where first a loading station measures product qualities using a balance and a
barcode scanner. For the conveyor we monitor its electric motor (power, torque,
speed, temperature) and some induced failure events. The simulated quality con-
trol again measures sizes of the products. Finally, the packaging station samples
the cycle times we want to forecast. Each station further observes its current
workload and operating timestamp (seen as soft sensors).

Overall, the final feature ontology consists of 6 processes (one additional
for the separated assembly), 18 sensing devices that sample 47 different mea-
surements, i.e. feature individuals. In addition to that there are 13 concrete
instantiations of relations between two features.

Data Sets & Results Starting from the original cycle time data set, we obtain
three additional variants for evaluation purposes. Table 4 depicts their individual
characteristics. The full data set consists of 47 dimensions and 2000 instances,
while in the sparse case, the number of instances is kept to 40 so sparseness
is preserved. After applying the reasoning procedure presented in Algorithm 1,



Table 4: Original and reduced variants of product cycle time data set

Data Set n p Reduction
OLS CV
RMSE

Cycle time full 2000 47 - ≈1.36×1011

Cycle time semantic reduced 2000 29 38.3 % 0.08

Cycle time p-value reduced 2000 18 61.7 % 0.06

Cycle time sparse 40 47 - 9.49

Table 5: Embedded model performances on 10-fold cross validation
Data Set Model Reduction CV RMSE

Cycle time full

Lasso 47.4 % 0.42
ElasticNet 34.4 % 0.57

Graph Lasso 4.5 % 0.32
GraKeLasso 4.9 % 0.32

Cycle time sparse

Lasso 51.3 % 0.48
ElasticNet 8.7 % 0.46

Graph Lasso 8.9 % 0.54
GraKeLasso 6.8 % 0.43

the number of features p reduces to 29 – approximately 38 % reduction. On the
other hand, a common p-value based selection reduces dimensionality to 18 (at
0.05 significance threshold). This means that there are many linear dependen-
cies in the original data set which can be eliminated by pairwise correlation. The
semantic approach does not eliminate dependencies by correlation, but excludes
features that are inferred to be independent of the response variable by means
of the feature ontology. For each of the data sets an OLS model is trained and
evaluated with respect to the coefficient of variation of the root-mean-square
error (CV RMSE) in cycle time seconds. It can be seen that best performance is
given for the p-value reduced data set, however, the semantic reduced data set
shows competitive results.
The embedded feature selection models are evaluated in a similar setting. Model
performances shown in Table 5 correspond to the overall best value determined
by a grid search over λ, whereas α ∈ ]0, 1] was set to the best of an inner
cross validation, respectively. Final performance results are again averaged over
10-fold cross validation. The reduction column also reports on each of the em-
bedded model’s average feature selection capabilities, i.e. number of zero valued
coefficients.

Discussion Overall, our results indicate two main insights. First, compared to
p-value based selection, which does a better job at reducing dimensionality, se-
mantic feature selection shows competitive performance in a sense that it keeps
the needed features in its original form without any data-intensive computa-
tions. Interestingly, after upfront feature selection the ordinary least squares



model outperforms all the other approaches for this setting and yields the over-
all lowest error. Second, our GraKeLasso shows best performance on the full and
the sparse data set, because it can take similarities of the whole feature space
into account. In summary, it can be seen that both of our approaches effectively
decrease prediction errors and show competitive or even superior performance
compared to conventional techniques. Due to this limited simulation scenario,
we could not show that a combination of both approaches is beneficial. Further
evaluations on large-scale systems, when upfront feature selection alone does not
suffice, are necessary to investigate this.

6 Related Work

Due to the plethora of research concerned with feature selection, we will only
present related works that are closely connected to the one in this paper. For a
general overview of the field, we refer to the survey paper [4].
Coming from a semantic perspective on feature selection, the technique intro-
duced by [6] describes a fuzzy approach to capture implicit semantics of data
sets in order to reduce their dimensionality. They apply fuzzyfication on the
degree of which features are dependent based on their co-occurring consistency
with the decision variable. However, this technique does not rely on any explicit
semantics defined in the data model and also needs preferably access to the full
data set. In the field of biomedical machine learning applications, considering
domain knowledge in feature selection has been studied and shown that feature
spaces for association rules can be greatly reduced when medical domain knowl-
edge about concepts is introduced, see [1]. The authors introduce dependencies
between medical concepts, such as diseases and treatments, in order to learn
more compact association rules. Another kind of related work that has been
studied with increasing interest is the family of Lasso regularization models. Al-
gorithms like the GOSCAR have been applied to consider dependency knowledge
between genes in DNA sequences as penalty for group regularization in graph
Lasso models. These models have shown to increase classification accuracy in
several studies, e.g. [11]. Similarly, for image classification semantic dependen-
cies between labeled images have been integrated into a Lasso approach [2].
In summary, including semantics into feature selection has been the concern of
very few research studies outside of text and image processing domains, where
semantics are mostly given through natural language. However, there are certain
knowledge-based approaches that argue for the dynamic adaption of features to
account for changes in the data generation process [9].

7 Conclusion and Future Work

In this work, we introduced the application of semantic feature selection for ma-
chine learning models in modern industrial automation systems. Only few works
have been concerned with the usage of explicit semantics, in order to facilitate
feature selection, which still remains one of the main issues. Especially in the



manufacturing domain, there are many known dependencies between measure-
ments that are cut out to guide this process. In this paper, we show how a
small amount of semantic relations can be used to significantly reduce the size
of feature spaces for exemplary learning problems in manufacturing systems and
still yield good performance. Furthermore, we presented an embedded feature
selection for linear models that captures feature similarities within RDF graphs
and outperforms conventional approaches when applied to sparse data sets.

In future work, we plan to implement the developed approach in a real-life
automation system. A particular promising direction seems to be the conjunction
of this approach within OBDA systems, where ontologies are used to retrieve
instance data. By deploying machine learning on top of OBDA, a coupling of
our approach and ontology-based queries could reveal some synergy effects.
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