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Abstract. DALI is a practical system that exploits Linked Data to provide 
federated entity search and spatial exploration across hundreds of information 
sources containing Open and Enterprise data pertaining to cities, which are stored 
in tabular files or in their original enterprise systems. Our system is able to lift data 
into a meaningful linked structure with explicit semantics, and support novel 
contextual search and retrieval tasks by identifying related entities across models 
and data sources. We evaluate in two pilot scenarios. In the first, data-engineers 
bring together public and enterprise datasets about public safety. In the second, 
knowledge-engineers and domain-experts, build a view of health and social care 
providers for vulnerable populations. We show that our approach can re-use data 
assets and provides better results than pure text-based approaches in finding 
relevant information, as well as satisfying specific information needs.  

1 Introduction 

Smart City applications rely on large amounts of data retrieved from sensors, social 
networks, or government authorities. Such information is often published in open data 
portals to promote transparency and enable innovation, as well as inviting a large 
community to explore how new insights can be derived from existing datasets and their 
combinations. For example, the NYC data platform [19] allows users to explore 
datasets through keyword search or by navigating through their catalogues.  

Cities need to exploit this valuable resource in combination with data from their 
existing enterprise systems. Open data is often published in the form of tabular data, 
with little or incomplete schema information, while enterprise applications typically 
rely on complex relational schemas. There is a clear need to make city-specific 
information easy to consume and combine at low cost, but this proves a difficult task. 
To fulfill the potential of exploiting large volumes of data and obtain insights, in 
response to complex information needs, the following challenges are to be tackled: 
- Data Discovery. How to discover datasets and facts for diffferent user tasks, given 
the complexity of the domain, extreme heterogeneity, diversity of the data, lack of a 
priori defined schemas, and poor semantic catalogues. 
- Data Integration How can data be understood in order to uncover relationships, in 
face of a dynamic and open environment, the infeasibility of creating a single model to 
cover the entire domain and the poor scalability of N-to-N integration approaches.  
- Data Exploitation. How to create actionable views to provide relevant insights across 
all data sources, for a broad set of tasks, with minimal user effort?    



In this ocean of data, Linked Data technologies can improve interoperability and 
discoverability of datasets by reusing standard vocabularies, linking to external 
sources, as well as enabling richer querying [5][17]. In this paper, we present and 
evaluate DALI, a system that puts together existing semantic techniques to offer a 
lightweight and incremental information sharing approach, on top of heterogeneous 
enterprise city data and selected well-formed open data in tabular form, as well as an 
end-user application, to search and consume city data online. Our contributions are:  
• Open Distributed Modeling. Organizations can expose structured and semi-structured 
information based on their models (ontologies) of choice. The system ingests and 
integrates data in an incremental manner, lowering the entry cost by importing datasets 
as they are, and mapping them to other sources as needed.  
• Web of Data Integration. By lifting data to existing models and exploiting overlap 
across ontologies, hidden links across entities are uncovered, in response to user 
searches or explorations in the context of an existing dataset. Also, using LOD URIs as 
target vocabularies enables to uniquely identify and organize topics and to access more 
information about them when needed, fully reusing the Web-wide wealth of resources. 
• Fit-for-Use. Search and exploration interfaces allow users to profit from the 
expressive power of semantic standards, answering to complex information tasks, 
while hiding the complexity behind the data representation and services exposed. 
This paper is structured as follows. Two motivating scenarios, not currently addressed 
without the adoption of semantics, and our approach are presented in Section 2. The 
architecture and components for lifting, mining annotations and contextual retrieval 
across distributed sources are presented in Section 3. Experimental evaluation, 
discussion and our position against related work are presented in Sections 4 and 5.  

2 Motivating Scenarios and Approach 

We present DALI in the context of two representative industry scenarios, driven by 
IBM solutions, that require tackling the discovery-integration-exploitation challenges 
discussed above. The first is to allow data-engineers using IBM Intelligent Operation 
Center (IOC) [11] enhance enterprise data with open data. The second is to support 
data-engineers build a Safety Net of health and social care providers and community 
services from public sources. This Safety Net can be used to support care workers 
finding services targeted to vulnerable populations in a city, and to create personalized 
care plans based on patient needs, in the context of IBM Cúram [13]. 

Scenario 1. Enterprise data obtained from IBM IOC in Minneapolis, and stored in 
IBM DB2 relational tables, is enriched with relevant open city data, which comes in 
the form of spreadsheets made for consumption by humans. The enterprise data, 
pertaining to events in the city, describes, among others, a point in time, a location, and 
a type (e.g., police calls reporting different incidents, events in an stadium like a lost 
child or a spectator requiring medical assistance, licenses granted to establishments, 
etc.). These events from multiple sources can be visualized in a map or a dashboard.  

Consider a field worker concerned about safety issues in the city. In order to 
prioritize onsite inspection, she has access to an enterprise dataset about police call 



outs related to safety issues, that she would like to overlay with other open datasets 
with relevant information, such as places with higher average rates of crime. She may 
also be interested in the location of hospitals near the places generating most 
ambulance and emergency call outs, or with higher response times. In this scenario, 
users explorations have a geographical focus and relevant links are uncovered on-
demand. The required information is coming from different domains and sources that 
one can typically find in data-hubs for a given city (covering domains such as health, 
environment, public safety, education, recreation, etc.). In particular, we included 
datasets from geocommons.com, as well as some national-level datasets for the USA.  

Scenario 2. Integrated Care aims at improving patient care by coordinating social and 
health care services for the vulnerable populations like the elderly or homeless [15]. 
We exploit open data to build a Safety Net knowledge graph to support care for seniors 
and their families in New York City. A Safety Net is a foundational and extensible 
“map” of all known care services, their characteristics and connections for a target 
vulnerable population and area. To build a Safety Net we can bring in multiple 
resources for social and health related services published in the NYC data portal [19], 
Geocommons, as well as Medicare public data on quality of care across the U.S. [20]. 
Starting with this siloed, noisy, heterogeneous data with no single schema, entities are 
automatically extracted to understand the type of organization (e.g., hospitals, 
pharmacies, day care centers, meal delivery services, etc.), the services they offer and 
other attributes – such as contact details, opening hours, private or non-profit-, or 
particular attributes for each provider across the different datasets – like readmission 
rates and main specialities for hospitals (cardiology, neurology, etc.), or targeted 

populations (families, 
youth, immigrant, elderly) 
for community resources.  

Existing models are 
used to annotate, catalog 
and link the data, therefore 
mapping each entity into a 
linked Safety Net graph. 
Data services are provided 
on top to create views, with 
information about 
providers and services 
available. Experts can then 
search, select and constrain 
the relevant criteria (facets) 

for each provider, like 
estimated cost, distance or hospital ratings for given medical specialities. These views 
can be exported in a JSON format to feed analytics and optimization algorithms to 
calculate the optimal services and plans, according to the combination of the various 
criteria and constrains on providers specified by the care team. Fig.1.A shows a 
screenshot on the imported views with the providers and attributes relevant to care for 
two needs of a given patient and her family. In this example, the selection of hospitals 
that care for dementia is based (among others not shown) on their average spending 

Fig 1. Use case demonstrator for social care planning  



and total performance score, as stated across different Medicare datasets. The criteria 
for childcare providers are based on a cost range and max. number of participants. In 
Fig.1.B, one can see the combination of providers and their locations on the map, in 
the context of a planning component (that is beyond the scope of this paper).  

The first scenario motivated the development of the system, and it is used to 
showcase examples in the rest of the paper. The second scenario shows that the system 
is not tailored to a particular use case. The resulting consolidated, multi-faceted, linked 
information is used to bootstrap search and exploration and expose it to users, moving 
from catalogue-based content management to searching and querying for entities and 
their relations across sources, aggregating information into customized views.  

We propose a data-centric approach that consists of 3 steps as explained next. 
Firstly, raw tabular data is ingested and semantically lifted. Secondly, the entities and 
relations are automatically annotated and aligned to well-known vocabularies and 
widely used Linked Open Data (LOD) resources. Thirdly, different spatial views and 
exploration paths are exposed according to dynamically chosen models, other related 
datasets, and interaction paradigms, such as keyword and faceted search. 

3 Architecture and Components 

We present a flexible architecture (Fig. 2), in which the following functionality and 
main contributions are exposed:  
1.  Distributed data ingestion and virtualization (Data Server). Enterprise relational 

data and tabular open data files are accessed and exposed as virtualized RDF via 
SPARQL end points. The distributed nature of RDF allows access to linked 
information across silos and from different agencies. An initial semantic uplift is 
done at this point, to identify entities, labels, datatypes, and geo-temporal data. 

2.  Identification and semantic uplift of entities from open and enterprise data to an 
open set of specified ontologies (Application Server). External LOD sources and 
ontologies are used to annotate the data, providing meaning, context and links across 
sources and entities exposed from open data.  

3.  Contextual information retrieval (RESTful APIs). Efficiently retrieve entities based 
on space and semantics relatedness, given a user query or through explorations of 
related entities within some geographic proximity. Functionality is exposed as 
RESTful APIs for easy developer consumption (no semantic knowledge required). 
The Data Server component abstracts from the infrastructure of each source, the 

information is accessed from distributed sources as RDF by exposing virtualized 
SPARQL end points. The Application Server component then accesses the exposed 
SPARQL end points to extract semantic annotations (using the reference ontologies) 
and schema information. These annotations and schema are stored in a centralized 
context store based on Jena TDB, where different graphs are created and associated for 
each distributed source to keep provenance. The context store is indexed using LARQ 
[16] that enables to perform text searches on all labels, as part of SPARQL queries. 

This architecture allows for incremental integration. New datasets, reference 
ontologies (annotation sources) can be configured and added at any time. The system 
automatically lifts, exposes and annotates new datasets, or if new reference ontologies 



are added, the system aligns each data source with the new models, adding the new 
annotations in the context store. Multiple data repositories are maintained and queried 
in a federated manner using the REST services to exploit DALI semantic capabilities. 

 
  Fig 2. Architecture and component diagram 

For the prototypes and setup used in our experiments, for scenario 1 (public safety in 
Minneapolis), over a hundred datasets (from one customer’s DB2 enterprise database 
and open datasets) were automatically integrated, semantically annotated and linked in 
less than one hour, producing approximately 1 million virtualized data triples in two 
SPARQL end points (one for open data and one for customer data). For those datasets, 
almost 190.000 triples and annotations were extracted and stored in the centralized and 
indexed context store. For scenario 2 (NYC Safety Net) 34 datasets were ingested into 
one SPARQL end point, consisting on almost 114,440 data points (“rows” of data) and 
3.5 million triples. However, any number of SPARQL end points can be configured, in 
order to meet potential scalability requirements. 

3.1 Distributed Data Ingestion and Virtual RDF (Data Server) 

The semantic layer enables de-coupling from the infrastructure of each source. While 
original enterprise data resides in the original relational systems and is accessed though 
virtual RDF, tabular files are automatically downloaded and linked to a relational 
database (currently PostgreSQL9.3). As stated in [26] having a semantic representation 
on top of a relational one improves data quality without adding much overhead when 
converting CSV to a simple database schema. The datatypes are determined by 
examining the data: numbers, booleans, dates are converted into the correct format.  

We use –ontop-Quest[24] as a virtualization technology, although, due to our 
flexible architecture, we can set as many different types of SPARQL endpoints as 
needed (e.g., interfacing directly to other triple stores, or other virtualized Enterprise 
DBs). Mapping files (i.e. files specifying one-to-one mappings between database 
property values and known RDF properties) for the virtualization servers are generated 
by our system using a rule and pattern-based entity extraction mechanism to detect: (1) 
geographical entities (using WGS84[29] to create properties for certain header labels 
with cell values corresponding to decimals number between -90 and 90); (2) the 
column with names for instance labels (rdfs:label); (3) columns (properties) with 
contact information: emails, addresses, phone numbers (named using VCARD[28]); 
(4) temporal properties (named using OWLTime[21]). Often, temporal properties 



(dates, month, year) are not part of the table itself but they need to be inferred from the 
table titles (e.g., Crime Stats May 2013); and (5) object properties, those columns for 
which values are mapped to instance URIs instead of literals, as for datatype 
properties, that’s the case if the column is a foreign key, or for string (non-numeric) 
repeating values (below a threshold variance percentage) - e.g., city names. In addition 
to virtualization, this step includes geocoding of addresses. 

3.2 Entity Uplift and Linking to the Web of Data (Application Server) 

For each dataset in the virtualized RDF repositories, the schema information is 
extracted and stored it in the centralized Context Store: types, datatypes and object 
properties, and their set of possible instances, domains and ranges, together with 
entities’ labels, if known, for indexing purposes. While some of the properties could be 
mapped to the W3C vocabularies in the previous step, to create a richer representation 
the entities in the Context Store are annotated and linked to an open set of both general 
and domain specific ontologies (that may vary according to the application domain). 
We use index searches and string similarity metrics [2] on the localname or label to 
annotate classes and properties with URIs found in the external sources used as 
annotators, as well as to find owl:sameAs links across instances.  As such, we can 
detect synonyms and interpret acronyms (e.g., an instance named “PTSD” will be 
annotated with “Posttraumatic stress disorder”, a DBpedia [1] redirect of the former). 

Reusing well-known external sources to annotate the data adds significant value in 
terms of interoperability and discoverability, providing global meaning and common 
anchors across otherwise isolated data sources, without requiring the creation of a 
common model. In our scenarios, we use the Integrated Public Service Vocabulary 
(IPSV)[14], schema.org, WordNet[9] and DBpedia, which provides a wide domain 
coverage and geographical information. Specialist domain-knowledge models can also 
be used according to the use case. In particular for the Safety Net scenario we added 
the Social Care Taxonomy extracted from [27].  

The annotations obtained for class labels that correspond to the table titles, often 
indicate the topic of the dataset. They are used to populate the Dublin Core [6] 
property dcterms:subject. Besides string similarity, the structure of the ontologies is 
used to disambiguate and assign a confidence score to the candidate annotations. For 
example, for the dataset class labeled Minneapolis Crime Data various dcterms:subject 
properties are added to link this term to the DBpedia terms Category:Crime_Data, 
dbp:Crime, and dbp:Minneapolis, as well as the IPSV term Crime, among others1. The 
annotations IPSV:Theft_and_burglary and dbp:Robbery, for a property in this dataset 
labeled Robbery, will have a high confidence score both as a good syntactic and 
semantic mappings, capturing how semantically close the URIs are in the original 
graph (the subject annotation IPSV:Crime is a broader term for the property annotation 
IPSV:Theft_and_Burglary, similarly dbp:Crime relates to the property annotation 
dbp:Robbery through a common broader term dbp:Criminal_law). These annotations, 
linking the source URI and the annotation URI, and their assigned confidence scores 
are stored in an annotation graph in the Context Store.  

                                                             
1 IPSV and dbp correspond respectively to http://id.eds.org.uk/subject and http://dbpedia.org/resource/  



3.3 Contextual access and retrieval (RESTful APIs) 

User needs are (a) complex; often, they cannot be expressed in a single query and 
exploration mechanisms are needed; (b) not known in advance; and (c) comprising 
many factors and requiring related information coming from different domains. 
Contextual retrieval requires understanding space, time, identity and links between 
entities. Annotations are used to capture the meaning of content in our RDF stores, by 
making explicit how entities are connected. The linkage is based on inference along 
linguistic relations in thesauri, taxonomies (e.g., skos:broader/narrower in IPSV, 
hyper(hypo)nyms in WordNet) and any kind of semantic relationships, such DBpedia 
redirects, dcterms:subject, owl:sameAs, etc. In this sense, two disparate datasets about 
diverse topics, like Ambulance Call Outs and the Register of Fats and Oils Licenses 
may both be relevant in the context of a user correlating the location of ambulances 
call outs and hospitals, because the latter contains the locations of establishments for 
which a license has been granted, where establishments can be filtered by type 
(hospitals, restaurants, etc.). User search and exploration needs while interacting with 
the data are captured and translated into structured queries. The retrieved information 
can be visualized on tables, maps, charts or as a ranked list of search results and saved 
into views, which can be exported in JSON or RDF. The following contextual APIs are 
exposed through REST services and integrated into a web based UI2. 

Catalogue-based dataset and entity explorations. Datasets can be explored according 
to the virtualized repositories where they belong (e.g., for Scenario 1 we have two 
repositories for customer data and open data) or by following any given reference 
taxonomical models. In both scenarios, the IPSV hierarchy is selected as the reference 
model for thematic catalogue exploration because of its wide coverage of city related 
topics, and a subset of DBpedia, namely all entities of type “PopulatedPlace” and their 
PartOf taxonomy, is selected as the geographical model. For the Safety Net scenario, 
the domain-specific Social Care Taxonomy is also used to catalogue the data. Datasets 
are organized into a hierarchical view of subcategories in the reference model(s), 
allowing an easy and thematic browsing of the data. The alignment is done 
automatically when the entity representing the dataset type is annotated with the model 
(dcterms:subject). Thus a dataset may sit in more than one subcategory, if appropriate. 
To avoid users having to navigate through empty categories, only the part of the 
catalogue tree for which there are datasets is shown.  
In our Minneapolis scenario, the user can explore all datasets under the IPSV term 
“Safety” and subcategory “Emergencies” to find the Fire and Ambulance call outs 
dataset sit under the subcategory “Fire and rescue services”, the term its been 
annotated with. The user can also view at a glance all known datasets under a given 
location, e.g., all datasets for USA, state of Minnesota, Minneapolis city. The user can 
click on a dataset to display the tabular data (generated from their representation in 
RDF), explore the annotations, or plot spatial entities in a map. By clicking on any of 
these entities in the map the user can also explore its properties and attributes.  

                                                             
2 Videos showcasing DALI: https://www.youtube.com/playlist?list=PL0VD16H1q5INAARBVy4GtTSRLN4EWmcqF 



Semantic keyword search and structured filtering. Full-text search based on LARQ 
is used to discover entities matching the keyword search. The domain knowledge 
ontologies and models, used to annotate the data, are also used to expand the query 
with lexically and semantically related words. For example, the Crime Data dataset is 
returned as a result for the keyword search Fire. This is because Fire is semantically 
related to Arson, a datatype property in the dataset. Fire is lexically annotated with, 
among others, the IPSV term for Fire IPSV:613 that is related to the term IPSV:612, 
also known as Arson, through the property SKOS:related. Datasets are ranked by 
number of matches (classes, properties and instances), weighted by the average 
syntactic score given to each match. If no matches are found for compound terms, they 
are recursively split into their constituents, e.g., hospital health centers would get 
datasets with results for both hospital and health centers. Each partial term is also 
semantically expanded and results are ranked considering also which part of the 
compound is matched (e.g., a match to health center is ranked higher than one to only 
centers). As per user request the matches can be plotted on the map and their 
provenance (semantic relatedness to the keyword) displayed. 

While keyword search is a popular paradigm to retrieve data, structured queries 
provide the expressivity to specify complex information needs. Keyword search can be 
combined with faceted and spatial explorations in an iterative process, where the user 
can enter keywords and further refine the query by applying faceted filtering on the 
results, or any other dataset of interest. For example, the search for Fire gives back 
several matches in the Police CAD dataset, namely various instance values of the 
object property Problem – Fire Assault, Assist Fire Personnel, etc. – for each retrieved 
police call entity.  The user can select to plot in the map only the entities related to Fire 
Assault, and overlay them with crime locations, from the Crime Data dataset, with 
more than a given number of arson crimes (specified by the user). In this case, Arson is 
a numerical datatype property and thus an equal/greater/lower than operator is 
suggested by the system to create the facet (different facets are suggested according to 
the datatypes –numerical/ boolean- and for object properties with a set of possible 
values). Users can also overlay spatial entities from any dataset in a map using 
common constructs such a bounding boxes. This is implemented by executing an 
single SPARQL query to filter all entities URIs (and labels) with Wgs84:lat and 
Wgs84:lon values within the bounding box geo points. 

Related dataset and entity search. As datasets are aligned with ontologies through 
annotations, these annotations can be used to identify other datasets closely related to a 
given one, based on topic (datasets share the same or linked topics), content (datasets 
with related properties or content, even in different topics) or entities in common 
(same entities described in different datasets). In our scenario, the user can look for all 
datasets related to the Crime Data dataset with statistics on different kinds of crime. 
The Police CAD dataset is obtained as it is annotated with semantically related topics 
(dcterms:subject property). The user can explore the relatedness graph showing how 
the two datasets are linked, e.g., through the IPSV term Crime and Law enforcement as 
shown in Fig. 3.A for the topic-based criteria. Also, these two datasets are content-
based related because they have properties or entities sharing the same annotations, as 
shown in Fig. 3.B, the instance value Theft for the property Problem in Police CAD has 
an owl:sameAs link to the DBpedia term Category:Theft, which is a broader term of 
Category:Robbery, an annotation property in Crime Data. The relatedness graphs for 



each annotator source are obtained on demand through a SPARQL federated query to 
find if there is a path (directly) linking annotations from a given dataset to annotations 
in other datasets from the same background source (e.g., DBpedia). Properties 
extracted based on rules, such as LAT/LONG and contact details (as defined in 
schema.org) are not considered relevant to identify related datasets.  

Related datasets are ranked by summing the relevance weights for the relatedness 
graphs (pv) obtained for each criterion. The weight is calculated according to how 
significant the entity-level matches are – i.e., for the content-based relatedness graph: 
how many annotations are matched (num_anns_common) out of the total for the input 
dataset (total_anns_input), as well as, considering the average confidence score (WSc) 
of each matched annotations to assign weighs to the different criteria when combined. 
The following formula, used to calculate the score (Sc) of a related dataset with respect 
to an input, responds to the intuition that datasets are more similar if they share more 
labels /annotations and share labels/annotations with large weights. The most relevant 
datasets have the highest score:  

4 Experiments 

In the first part, we perform a user study to evaluate the usability of the services 
exposed by means of the user interface, through a set of tasks that require retrieving 
complex information to create the relevant views. For the second part, we are 
demonstrating the effectiveness of the semantic search, whether adding related datasets 
has potential to improve search results, and the semantic cataloguing. We quantify the 
improvement on performance with respect to a non-semantic baseline. It is not our 
purpose to evaluate each step of the process or component independently, but to 
evaluate the relevancy of the results searched over distributed city data lifted into a 
knowledge graph, and in the context of a user-task.  

4.1 Contextual exploration: usability  

Evaluation Set-up. To evaluate performance in a more comprehensive manner, we 
have simulated a scenario, where evaluators are asked to use the system in order to 
answer the given complex information needs (simulating the role of a knowledge 
engineer). To test the ability of our system to retrieve this information, users are given 
a brief demo of the system and told they can use all the functionality available (Section 
3.3). We have asked 5 users (all IBM employees and IT experts but not knowledgeable 
about semantic standards or the datasets) to retrieve the answers to the tasks in Table 3, 
which may span across more than one dataset. Queries 1-5 are part of Scenario 1, 
while Queries 6-10 are part of Scenario 2. The questions were given by experts of the 
respective commercial products with extensive hands-on experience in the domain. 
The order of the queries presented to each user was randomized. We evaluate on:  
• Average number of tasks for which users found satisfactory answers vs. the ones for 

which they gave up or report a wrong result. 

Sc _ dataset = Avg(WSc _ anns _ common)*num_anns_ common
total _anns_ inputpvi

∑



• Time to get the answer. We started a timer once the user was given the question and 
stopped the timer when the user would give up or report an answer. 

• Which explorations and features were used to get the answers and the number of 
failed attempts. 

Results. The results are shown in Table 2. We counted the features the users used to 
answer each query: semantic search (SEM), catalogue exploration (CAT), displaying 
tabular data, matches or entity information (DIS), plotting entities in a map (MAP), 
selection and faceted filtering (FAC), drawing a bounding box to visualize all entities 
within (BOU), and looking for related datasets and relatedness graphs (REL). The 
queries that were answered faster are those for which only one dataset is required to 
find the answer (Q3 and Q10). All users were successful in all tasks, except for Q2, Q3 
and Q9 for which three different users (one for each query) gave up. For Q2 users 
would often attempt to find the answers in the Police CAD dataset (one of them gave 
up when she could not find it there), while the answer is found by applying faceted 
filtering on the property robberies in the Crime dataset (also returned as a result from 
the keyword search robbery). In Q3, one user gave up before realizing he could apply 
more than one facet filter in the same dataset. For Q9 a user failed to find the 
readmission rates by heart attack property in Medicare Hospital Outcome of Care 
Measures, picking instead the general expected readmission rate specified in the 
Medicare Hospital Readmission Reduction dataset. Facet filtering can then be applied 
to get the entities with the minimum readmission rates value.  

Table 1. Test questions with the minimum n°  of relevant sources and navigation links (that is 
the minimum number of steps as determined by the authors to obtain the answers). 

    n°  sources   Question  (min.  navigation  links  to  answer  them)  
2   Q1:  The  sport  stadium  in  Minneapolis  near  one  of  the  most  dangerous  pedestrian  areas  in  the  USA(4)  
2   Q2:  Which  cafes  are  near  robbery  crimes  areas  in  Minneapolis  (5)  
1   Q3:  Locations  with  more  than  10  car  thefts  and  10  arson  crimes  (3)  
2   Q4:  All  places  holding  both  a  liquor  license  and  sidewalk  permits  (2)  
  2   Q5:  All  police  disturbances  near  the  Creekview  center  (5)  
3   Q6:  Community  programs  for  the  elderly  population  in  Queens  (5)  
2   Q7:  Readmission  rates  for  hospitals  with  emergency  services  (4)  
1   Q8:  Home  delivery  meal  services  in  the  Bronx  (2)  
2   Q9:  Non  profit  hospitals  with  the  minimum  mortality  rates  from  heart  attack  (3)  
1   Q10:  After  school  programs  for  middle  school  kids  (2)  

For most tasks, users started by using keyword search or catalogue exploration. When 
catalogue exploration fails, such as when looking for Home Delivered Meals in Q8, 
users will use keyword search to find information hidden in the datasets (in this case 
the entities in the DFTA_Contracts dataset, which value for the object property 
Contract_Type is Home_Delivered_Meals). Besides searching and catalogue 
exploration, plotting a dataset or search results on the map and displaying entity and 
tabular data were features used in all queries (the latest, often used just to figure out if 
the provenance of the given answer, or search result, is sufficient). Facets were used in 
almost all queries. The query with the second largest number of attempts, Q7, is 
because first the boolean property specifying if a hospital has emergency services is 
found in a different dataset to the readmission rates one; and second, it took a while for 
a few users to understand that they can plot in the map the entities in common for both 
datasets, by combining the faceted and co-reference filters. In general, all queries 
related to hospitals took longer in average because of the large amount of clinical data, 



both in terms of number of datasets about hospitals, and the number of properties 
within each dataset (more than 50 in some of the Medicare datasets). For these cases, 
search is more efficient than catalogue browsing. 

The bounding box feature was rarely used, even if it is the faster way to answer 
queries such as Q1 (e.g., by drawing a bounding box near the most dangerous 
pedestrian area in Minneapolis), or even when the users knew where to look in the 
map. For example for Q5, once the Creekview center was found (in the dataset 
Minneapolis parks and recreations) only one user attempted to find reported 
disturbances by searching in the datasets with entities near by. The reason behind Q5 
largest number of failed attempts, is because users searched for the answers in both the 
Police CAD and Crime datasets, while only the former has the answer for disturbances. 
Nonetheless, most users would prefer to use faceted search to filter by area (if the 
property exists, such as Queens for Q6), rather than a bounding box. Relatedness was 
also hardly used, even if it is a useful feature for queries such as Q9 (the query that 
took the longest in average) to find all other hospital datasets with related properties to 
the Medicare Hospital Readmission Reduction dataset, e.g., those describing different 
measurements on readmission rates. Users preferred to do a semantic search and 
explore all matches till they find the one that is most appropriate. Finally, all queries 
were answered in average in less than 4 minutes, although the deviation between users 
varied greatly (with a max. time of 6 minutes), and required less than 7 steps in 
average (links) to retrieve the answers to a query.  In total, the average of the sum of all 
failed attempts per query for all 5 participants is 7.5. 
Table 2. Results from left to right for each query: the average of the sum of all features used by the 5 
participants per query; the average num. of links used by user to get an answer; the average of the sum of all 
failed attempts for all 5 participants per query; the num. of users which succeeded; the average time to 
answer the queries and the deviation. 

Features used (for all 5 users per query) Avg. links 
   (For user) 

Failed attemps  
  (for all 5 userse per query) 

Success Avg. time Deviation 
 SEM CAT DIS MAP FAC BOU REL 

Avg   8.6 4.1 9.4 7.6 4.9 0.5 0.8 6.7 7.5 4.7 0:02:37 0:03:04 

4.2 Semantic search: performance 

Evaluation Metrics. We compare the precision and improvement on recall of our 
semantic approach with respect to a syntactic baseline based on Lucene full-text 
searches, without semantic expansion. We measure precision (P), defined as the 
number of relevant datasets with respect to the number of datasets found, and recall 
(R), defined as the number of relevant datasets found with respect to the total of 
relevant datasets. Total recall cannot be measured (no gold standard to evaluate 
against), so we consider as total all the unique relevant datasets found using both 
approaches, and measure the improvement in recall of the semantic approach (Rs) with 

respect to the baseline (RB) as:   

Increasing recall often comes with a decrease in precision, which is affected by the 
quality of the annotations, noisy mappings and ambiguous lexically related words. 
Therefore, precision is also measured for the top N of results: TOP-1, TOP-3 and 
TOP-5, in order to evaluate the efficiency of the ranking. 

R _ improvement = 1 −
RB
RS P =

Total _ relevant
Total



Evaluation Set-up 1: Semantic Search. We evaluate the impact of semantic query 
expansion on 20 keywords, obtained randomly from the logs generated after the 
evaluation in 4.1. We distinguish between coverage, correctness and relevance. 
Coverage is measured by counting the number of results. However, this does not 
indicate whether the results are relevant. To evaluate correctness and relevance we 
have engaged three of the previous five evaluators. Each of them has assigned a score 
with a discrete value in {0,1,2} for each datasets retrieved as a result, where: 0 implies 
the proposed dataset is based on semantically incorrect assumptions, i.e., due to an 
ambiguous annotation; 1 implies the proposed dataset is based on semantically correct 
justifications, but it is not relevant; and 2 implies the proposed dataset is correct and 
relevant to complement the information of the original dataset. For users to judge 
relevancy they can relate to the tasks presented in Section 4.1. Given the three user 
evaluations, a result was considered correct if at least two evaluators were rating it 
with values higher than 0, and it was considered relevant if at least two evaluators were 
rating it with 2 and the remaining evaluation was not 0. 
Set-up1 Results: as shown in Table 3. The semantic approach improves the average 
recall of the system by 33%, as it is able to find all the relevant datasets found using 
the baseline approach plus some additional ones, without much loss in precision, from 
70% in the baseline to 69% using the semantic approach. Furthermore, as shown in 
Table 4 the semantic ranking increases the precision from the 0.7 average for the 
baseline to 0.9, 0.78 and 0.75 for the top-1, top-3 and top-5 results respectively. In 
sum, a semantic approach helps increase recall, while also increasing the precision for 
the top ranked results, i.e., those users are likely to check. The syntactic errors are 
mostly due to ambiguous terms, e.g., the keyword Fire was mapped to the Fire Station 
dataset, but also to the instance Fire restaurant in the Fats and Oils Licenses dataset. 
The users rated the first match as relevant (2) and the second as incorrect (0). While 
these syntactic mappings were also captured by the semantic component, the 
inaccurate mappings were ranked lower than the more accurate semantic matches. In 
addition, other relevant datasets were only found using the semantic approach, like the 
Crime Stats with the property Arson. In two cases (pedestrian and liquor licenses) the 
syntactic approach performed slightly better than the semantic. This is because all 
relevant datasets were syntactically matched, and the semantic extension retrieved 
inaccurate lexically related results – that although they scored lower they were part of 
the top-5 (as less the 5 datasets were found in total). The semantic approach improves 
over the baseline in particular when asking for schema elements (types, properties) or 
term combinations (e.g., sport stadiums) rather than instance labels. In the latter case, 
both approaches perform the same (returning the instances with matching labels).  

Table 3. Comparison between baseline and semantic approaches 

Query     Baseline   Semantic  Approach  
20  total      Coverage   Prec./Recall    Coverage   Prec./Recall    Recall   Improvement.   
TOTAL   3.15   0.70  /  0.66   5.65   0.69  /  1   0.33  

Table 4.  Comparison for the top ranked results  

Qi   Baseline   Semantic  Approach   Relatedness-­‐TOP3  

  
TOP-­‐1   TOP-­‐3   TOP-­‐5   TOP-­‐1   TOP-­‐3   TOP-­‐5   #Total   #New   #Rel  

Average   0.7   0.69   0.70   0.9   0.78   0.75   7.15   5.45   3.25  



Evaluation Set-up 2: Semantic Relatedness. We evaluate whether our algorithms that 
retrieve highly related tables can also improve the result of searches (by pulling up 
datasets based on their relatedness to top ranked datasets). To measure improvement 
on recall: (1) we find all related datasets for the TOP-3 ranked results in each of the 
previous queries (#Total); (2) from all related datasets, we select only the ones that did 
not appear in the top-5 search results (#New); and (3) from all the #New datasets, we 
select the ones rated as relevant (#Rel);. As before, we randomly ordered the searches 
and asked the 3 users to rate the results between 0-2. A dataset selected as related to a 
given one based on semantically correct assumptions (e.g., common annotations) may 
not be relevant, because the content of the dataset is not specialized enough to give any 
extra information, or the commonalities are not significant. In the same way, a 
disparate dataset from a different topic may be relevant because it describes similar 
entities from different points of view relevant as part of an exploration task. 
Set-up 2 Results: in Table 4, on the right, we show the number of unique related 
datasets added by looking at related datasets from the TOP-3 (#Total), that do not 
appear as part of the TOP-5 semantic search results (#New) and that the users rated as 
relevant (#Rel). In average 5.45 datasets out of 7.15 found were not in the original 
TOP-5 results. A significant portion of the new related datasets are considered relevant 
(3.25 obtained an average user rating of 2). Thus, relatedness can be used to suggest 
further relevant explorations from user searches by making “hidden semantic links” 
across entities explicit, based on different relatedness criteria. In this experiment only 
the related datasets with an average score over a 0.5 threshold were selected. As an 
example, Crime Data is one of the TOP-3 results for Fire, because of the annotation 
property Arson. A related dataset, not part of the top ranked search results, is Law 
Enforcement. This is because, both datasets share the same IPSV subject Crime. 
Ranked before Law Enforcement is Police CAD, as their respective annotations are 
linked through IPSV and DBpedia, as shown in the relatedness graphs in Fig. 3.A&B. 
The total score for a related dataset is calculated by considering the combined weight 
of all relatedness graphs across the two datasets. As such, like in semantic search, 
datasets with inaccurate matches from ambiguous annotations are often ranked in 
lower positions. Users judged the relevance of the results, assessing if the relation 
between two datasets is meaningful considering the tasks in Section 4.1. The Fleiss’ 
kappa agreement between users was moderate/substantial (k=0.6)[8].  

 
  Fig 3. Relatedness graphs for related datasets 

Evaluation Set-up 3: Semantic Catalogue Search. IPSV is selected as the ontology of 
reference for browsing and searching datasets by category. For a total of 30 randomly 
chosen datasets, we ask the same 3 users to rate how well the dataset has been 
classified for each category (note a dataset may belong to more than one) with a value 
between [0-2], where 0 means the category is inaccurate, 1 that the dataset is correctly 



classified but it is not too helpful (e.g., not at the right level in the taxonomy), and 2 the 
category is relevant to find the dataset by browsing through the hierarchical tree. We 
measure precision as the number of datasets under a relevant category from the total.   
Set-up3 Results: all selected 30 datasets are categorized (100% coverage), each dataset 
is categorized into an average of 4.33 categories (the maximum being 11 and the 
minimum 1), and 29 datasets out of 30 have at least one relevant category. If a 
minimum score is applied as threshold (experimentally selected to favor precision, i.e. 
less datasets placed under an incorrect category, with a little negative effect on recall), 
to ensure that the categories matched to a given term have certain quality, then we get 
2.16 categories in average (with a maximum of 6 and a minimum of 1), and 28 datasets 
out of 30 have at least one relevant category. The precision for the relevant results in 
the non-filtering approach is 0.54; while in the score-based one is 0.78. The precision 
for the correct results is 0.84 and 0.93 respectively. The loss in recall is 0.76 on the 
score-based approach if we consider the non-filtering one as perfect recall (1). As an 
example, to specific categories may not be relevant if they are too specific, such as 
Swimming pools as the category for the dataset Leisure Facilities, or too general, like 
Leisure and culture. For this dataset, Leisure center was rated as the relevant category.  

5 Related work, discussion on usefulness and future lines. 

We address the timely issue of data consumption, exploration, search and linking in the 
context of cities, through a practical approach based on Linked Data. There are a 
number of unique challenges and opportunities for the IR and semantic communities in 
order to make heterogeneous city data searchable, and to address complex information 
needs that require analyzing the relationships between entities in context. In this light, 
we propose a lightweight and incremental information sharing approach directed 
towards leveraging the information spaces defined by the LOD datasets and city data 
of diverse ownership, to give meaning to the latter.  

Various publishing platforms exist for automating the lifting of tabular data into 
semantic data, and interlinking datasets with existent LOD datasets [25][18]. In [18] 
Google Refine is used to allow expert users to clean and export tabular data into RDF 
through a reconciliation service extended with Linked Data sources. Following the 
tools and recommendations by the W3C used for automatically converting tabular data 
(mostly CSV) and relational tables into RDF[12][10][7], in [26] a set of tabular data 
from the Norwegian directorates FactPages is transformed into a LOD dataset. The 
DataLift project [25] goes a step forward by transforming the raw RDF extracted from 
the source format to well-formed RDF by mapping to selected ontologies. These 
approaches are based on the assumption that each row is an entity and columns are 
RDF properties for the first RDF conversion; In [25] the user is asked to input a set of 
vocabularies to describe the lifted data and the target RDF is then generated through a 
set of SPARQL construct queries. In QuerioCity[17] we proposed a platform to 
provide semantic context for city data and metadata by following a centralized and 
incremental graph-based approach. The focus is on data-view manipulation by 
different publishers while tracking provenance. However, the drawback is the 
significant added cost on indexing this data. Unlike previous approaches, DALI 



presents a light-weight approach that considers the distributed nature of RDF and it is 
able to ingest any customer or open data available, as long as it follows a tabular 
representation. The data is (1) virtualized into RDF, extracting spatial/temporal 
entities, datatypes and object properties for each entity (row), even if often entities are 
not linked (no foreign keys); (2) exposed and contextualized with any reference 
ontologies and models of choice in the Web of data; and (3) combined in arbitrary 
ways across data sources, through semantic services that support users, without 
knowledge of SPARQL, to refine explorations and federated queries. 

Extracting structured data from tables on the Web and semantic search has also 
attracted interest from search engines [26][3]. In [26] columns in web tables are 
associated with types (automatically extracted from web pages), if the values in that 
column can be matched as values of the type. In [22] table rows containing entities of 
specific types derived from an ontology are automatically annotated. In [3] an 
approach is proposed for finding related tables on the Web based on: (1) Entity 
complement: union of entities with similar schemas; (2) Schema complement: joins of 
columns about the same entities. The BBC has annotated its world service radio 
archive with DBpedia topics. These associations, stored in a shared RDF store, are 
used to improve search and navigation within the archive [23]. Different from these 
works we propose an application that covers not only the annotating and semantic 
querying across a diverse set of heterogeneous, distributed enterprise and well-formed 
open tabular data for cities, but also the lifting of these data silos to Linked Data. 

There are no tools that we can use for a meaningful comparison and we still are a 
long way from defining standard evaluation benchmarks to evaluate search methods 
for urban data platforms and comprising relevance judgment of similar datasets. From 
information platforms, such as DubLinked.ie, one can obtain the most common 
keyword searches and most downloaded datasets. More effort is needed to better 
capture the users’ intention and experience while using the tool, in the context of 
complex real tasks that involve more complicated manipulation and combinations of 
datasets. Illustrated in the context of two real commercial use cases, our user-based 
evaluations are a first step to probe the feasibility and effectiveness of a knowledge-
mining prototype to query entities distributed across datasets, without the need to ETL 
data. We also conducted a small-scale study with experts from the urban planning and 
the health domains to further validate the system. The experts were three city planners 
from Dublin City Council and three staff members from the Department of Nursing 
and Midwifery from Trinity College Dublin, evaluating scenario 1 and 2 respectively. 
We have used the widely cited methodology from Davis[4] on predicting how much 
people will use a new product. Given our focus on functional components, rather than 
user interfaces, and the higher importance of usefulness compared to ease of use (also 
reported in [4]), we report numbers on the former. In Table 5 we report combined 
numbers since there were no significant differences between the scenarios. Overall, 
users gave positive scores (avg. =5.85, on a scale of 1-7). Critically for the goals of our 
system, users gave the system a high score for allowing them to work more quickly. 

Table 5. Questions and usefulness scores [1-7] for both scenarios.   
Quality  of  work   6   Control  over  work   5.5   Work  more  quickly   6.5  
Critical  to  my  job   5.5   Increase  productivity   6   Job  performance   5.5  

Accomplish  more  work   6   Effectiveness   5   Makes  job  easier   6  
Useful   6.5              



There is an abundance of research to be pursued: off-the-shelf co-reference tools can 
be used to make links more dense, as long as they do not depend on the availability of 
training data; incorporating social media data; exploring interactive ways to build NLP 
queries, exploiting user feedback to improve the machine-generated ranking, and 
supporting dataset discovery in the Web of Data using data-hubs such as CKAN.net. 
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