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Abstract. Currently, the dominant technology for providing non-
technical users with access to Linked Data is keyword-based search. This
is problematic because keywords are often inadequate as a means for ex-
pressing user intent. In addition, while a structured query language can
provide convenient access to the information needed by advanced ana-
lytics, unstructured keyword-based search cannot meet this extremely
common need. This makes it harder than necessary for non-technical
users to generate analytics. We address these difficulties by developing
a natural language-based system that allows non-technical users to cre-
ate well-formed questions. Our system, called TR Discover, maps from a
fragment of English into an intermediate First Order Logic representa-
tion, which is in turn mapped into SPARQL or SQL. The mapping from
natural language to logic makes crucial use of a feature-based grammar
with full formal semantics. The fragment of English covered by the nat-
ural language grammar is domain specific and tuned to the kinds of
questions that the system can handle. Because users will not necessar-
ily know what the coverage of the system is, TR Discover offers a novel
auto-suggest mechanism that can help users to construct well-formed
and useful natural language questions. TR Discover was developed for
future use with Thomson Reuters Cortellis, which is an existing prod-
uct built on top of a linked data system targeting the pharmaceutical
domain. Currently, users access it via a keyword-based query interface.
We report results and performance measures for TR Discover on Cortel-
lis, and in addition, to demonstrate the portability of the system, on
the QALD-4 dataset, which is associated with a public shared task. We
show that the system is usable and portable, and report on the relative
performance of queries using SQL and SPARQL back ends.

Keywords: Natural Language Interface, Question Answering, Feature-
based Grammar, Auto-Suggestion, Analytics
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1 Introduction

Organizations adopt Linked Data because they want to provide information
professionals with seamless access to all the relevant data that is present in
the organization, irrespective of its arrangement into database tables and its
actual physical location. Many organizations now have effective strategies for
ensuring that there are well-designed links between related records in different
tables. Technical professionals, such as database experts and data scientists,
will use a mix of traditional and novel database query languages to access this
information. But non-technical information professionals, such as journalists and
patent lawyers, who cannot be expected to learn a database query language, still
need a fast and effective means for accessing the data that is relevant to the task
at hand.

Keyword-based search allows non-technical users to access large-scale linked
data, and it can be applied in a uniform fashion to information sources that may
have wildly divergent logical and physical structure. But it does not always allow
precise specification of the user’s intent, so the result sets that are returned may
be unmanageably large and of limited relevance. If non-technical users could
write good SPARQL queries, they would get smaller and more relevant result
sets. In addition, because database query languages impose structure on the
result set, they can readily be used to provide dynamically generated analytics.
This is not so easy to do when the results are less structured, as they will be
when they come from keyword-based search.

Our system, TR Discover, is designed to bridge the gap between keyword-
based search and structured query. In our system, the user creates natural lan-
guage questions, which are mapped into a logic-based intermediate language. A
grammar defines the options available to the user and implements the mapping
from English into logic. An auto-suggest mechanism guides the user towards
questions that are both logically well-formed and likely to elicit useful answers
from the available databases. A second translation step then maps from the
logic-based representation into a standard query language such as SPARQL or
SQL, allowing the database query to rely on robust existing technology. Since
all professionals can use natural language, we retain the accessibility advantages
of keyword-based search, and since the mapping from the logical formalism to
the query language is information-preserving, we retain the precision of query-
based information access. We also retain the ability to generate useful structured
analytics.

TR Discover1 is composed of the following components: Web User Interface,
Auto-suggest, Question Understanding, FOL Parsing and Translation, Query
Execution, and Analytics Generation. We present the details for each of the
components in the rest of the paper: Section 2 describes use cases for TR Discover
with Cortellis. We then formally present the different components of TR Discover
in Sections 3 to 5, and evaluate our system in Section 6. We discuss related work
in Section 7 and conclude in Section 8.

1 Beta version available at: http://cortellislabs.com (free sign-up)
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2 Use Cases

In this section, we present use cases of TR Discover, targeting different types of
users. We describe the use cases in the context of Thomson Reuters Cortellis2

(Cortellis). Cortellis is a data integration and search platform developed for pro-
fessional users in the Pharmaceutical industry. It relies on a linked dataset that
covers a variety of domains, including Life Sciences, Intellectual Property, Legal
and Finance. A keyword-based query interface allows users to obtain informa-
tion relevant to a wide range of tasks, such as drug repurposing, target finding,
legal research about a specific drug, or search for patents owned by a particular
company.

Our first use case targets first-time users of TR Discover or users with lim-
ited knowledge of the underlying data. This user, User A, may be interested in
broad, exploratory questions; however, due to lack of familiarity with the data,
guidance (from our auto-suggest module, Section 3.2) will be needed to help
him build a valid question in order to explore the underlying data. Figures 1(a)-
1(c) demonstrate this question building process. Assuming that User A starts
by typing in d, drugs will then appear as a possible completion. He can either
continue typing drugs or select it from the drop down list on the user interface.
Upon selection, suggested continuations to the current question segment, such
as using and manufactured by, are then provided to User A. Suppose our user
is interested in exploring drug manufacturers and thus selects manufactured by.
In this case, both the generic type, companies, along with specific company in-
stances like Pfizer Inc and Glaxo Smith Kline Plc are offered as suggestions.
User A can then select Pfizer Inc to build the valid question, drugs manufac-
tured by Pfizer Inc thereby retrieving answers from our data stores along with
the corresponding analytics (Figure 1(d)).

The second use case targets expert professional users (e.g., medical profes-
sionals, financial analysts, or patent officers). This user, User B, understands the
domain, and has specific questions in mind that may require material from mul-
tiple slices of data. She need not be concerned with how the data is partitioned
across database tables because she is sheltered from this level of implementation
detail. Suppose User B works for a pharmaceutical company and is interested in
searching for patents relevant to a particular line of drug development. Guided
by our structured auto-suggest, she could pose the detailed question, patents filed
by companies developing drugs targeting PDE 4 inhibitor using Small molecule
therapeutic that have already been launched. Our system returns 12 patents for
this question and from the generated analytics (Figure 2), she can immediately
see a general view of the competitive field. User B can then drill further into
the patents, and begin to develop a strategy that navigates around potential
infringements of her competitors’ protected rights, for example.

2 http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharma-
business-development/cortellis-data-fusion.html
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(a) “d” is typed (b) “drugs” is se-
lected and sugges-
tions are provided

(c) “manufactured
by” is picked and
“Pfizer Inc” can be
chosen to complete a
question

(d) Query Results and Analytics

Fig. 1. Use Case: First-time Users of TR Discover

3 Question Understanding

3.1 Natural Language Question Parsing

In TR Discover, we use a feature-based context-free grammar (FCFG) for parsing
natural language questions. Our FCFG consists of phrase structure rules on non-
terminal nodes and lexical entries for leaf nodes. The large majority of the phrase
structure rules are domain independent allowing the grammar to be portable to
new domains. The following shows a few examples of our grammar rules: G1 -
G3. Specifically, Rule G3 indicates that a verb phrase (VP) contains a verb (V )
and a noun phrase (NP).

G1: NP → N
G2: NP→ NP VP
G3: VP → V NP
Lex1: N[type=drug, num=pl, sem=<λx.drug(x)>] → ‘drugs’
Lex2: V[TYPE=[drug,org,dev], sem=<λX x.X(λy.dev org drug(y,x))>, tns=past, NUM=?n]
→ ‘developed by’ /*In general, TYPE=[subject constraint, object constraint, predicate name]*/
Lex3: V[TYPE=[org,country,hq], NUM=?n] → ‘headquartered in’
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Fig. 2. Analytics for Complex Question from Professional Users

Each entry in the FCFG lexicon contains a variety of domain-specific features
that are used to constrain the number of parses computed by the parser prefer-
ably to a single, unambiguous parse. Lex1-Lex3 are examples of lexical entries.
For instance, Lex1 is the lexical entry for the word, drugs, indicating that it is
of type drug, is plural, and has the semantic representation λx.drug(x). Verbs
(V) have an additional feature tense (tns), as shown in Lex2. The type of verbs
specify both the potential subject-type and object-type, which can be used to
filter out nonsensical questions like drugs headquartered in the U.S.

Disambiguation relies on the unification of features on non-terminal syntactic
nodes. We mark prepositional phrases (PPs) with features that determine their
attachment preference. For example, we specify that the prepositional phrase
for pain must attach to an NP rather than a VP; thus, in the question Which
companies develop drugs for pain?, for pain cannot attach to develop but must
attach to drugs. Additional features constrain the type of the nominal head of
the PP and the semantic relationship that the PP must have with the phrase to
which it attaches. This approach filters out many of the syntactically possible
but undesirable PP-attachments in long queries with multiple modifiers, such
as companies headquartered in Germany developing drugs for pain or cancer. In
rare instances when a natural language question has multiple parses, we always
choose the first parse. Future work may include developing ranking mechanisms
in order to rank the parses of a question.

3.2 Enabling Question Completion with Auto-suggestion

Traditional question answering systems often require users to enter a complete
question. However, often times, it may be difficult for novice users to do so, e.g.,
due to the lack of familiarity and an incomplete understanding of the underlying
data. One unique feature of TR Discover is that it provides suggestions in order
to help users to complete their questions. The intuition here is that our auto-
suggest module guides users in exploring the underlying data and completing a
question that can be potentially answered with the data. Unlike Google’s query
auto-completion that is based on query logs [3], our suggestions are computed
based upon the relationships and entities in the dataset and by utilizing the
linguistic constraints encoded in our grammar.
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Our auto-suggest module is based on the idea of left-corner parsing. Given
a query segment qs (e.g., drugs, developed by, etc.), we find all grammar rules
whose left corner fe on the right side matches the left side of the lexical entry of
qs. We then find all leaf nodes in the grammar that can be reached by using the
adjacent element of fe. For all reachable leaf nodes (i.e., lexical entries in our
grammar), if a lexical entry also satisfies all the linguistic constraints, we then
treat it as a valid suggestion.

We rank the suggestions based upon statistics extracted from an RDF graph.
Each node in the RDF graph represents a lexical entry (i.e., a potential sugges-
tion), including entities (e.g., specific drugs, drug targets, diseases, companies,
and patents), predicates (e.g., developed by and filed by), and generic types (e.g.,
Drug, Company, Technology, etc.). The ‘popularity’ (i.e., ranking score) of a
node is defined as the number of relationships it is involved in. For example, if a
company filed 10 patents and is also involved in 20 lawsuits, then its popularity
will be 30. Our current ranking is computed based only upon the data; in future
work, it may be possible to tune the system’s behavior to a particular individual
user by mining our query logs for similar queries previously made by that user.

There are (at least) two ways of using the auto-suggest facility. Users can
work in steps: they could type in an initial question segment, like patents, and
wait for the system to provide suggestions. Then, users can select one of the sug-
gestions to move forward. By repeating this process, users can build well-formed
natural language questions (i.e., questions that are likely to be understood by
our system) in a series of small steps guided by our auto-suggest. Alternatively,
users can type in a longer string, without pausing, and our system will chunk the
question and try to provide suggestions for users to further complete their ques-
tion. For instance, given the following partial question drugs developed by Merck
using ..., our system first tokenizes this question; then starting from the first
token, it finds the shortest phrase (a series of continuous tokens) that matches a
suggestion and treats this phrase as a question segment. In this example, drugs
will be the first segment. As the query generation proceeds, our system finds
suggestions based on the discovered query segments, and produces the following
sequence of segments: drugs, developed by, Merck, and using. At the end, the
system knows that using is likely to be followed by a phrase describing a drug
technology, and is able to offer corresponding suggestions to the user. In general,
an experienced user might simply type in drugs developed by Merck using ; while
first-time users who are less familiar with the data can begin with the stepwise
approach, progressing to a more fluent user experience as they gain a deeper
understanding of the underlying data.

4 Question Translation and Execution

In contrast to other Natural Language Interfaces (NLI) [11, 18], TR Discover
first parses a natural language question into a First Order Logic (FOL) rep-
resentation. The FOL representation of a natural language question is further
translated to other executable queries (e.g., SPARQL and SQL). This interme-
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diate logical representation provides us the flexibility to develop different query
translators for various types of data stores.

The process of translating FOL to SPARQL/SQL can be divided into two
steps. In the first step, we parse the FOL representation into a parse tree accord-
ing to an FOL parser. This FOL parser is implemented with ANTLR3 (a parser
development tool). The FOL parser takes a grammar and an FOL representation
as input, and generates a parse tree for the FOL representation. Figure 3 shows
the parse tree of the FOL representation for the question “Drugs developed by
Merck”.

Fig. 3. The Parse Tree for the FOL of the Question “Drugs developed by Merck”

We then perform an in-order traversal (with ANTLR’s APIs) of the FOL
parse tree and translate it to executable queries. While traversing the tree, we
put all the atomic logical conditions and the logical connectors into a stack.
When we finish traversing the entire tree, we pop the conditions out of the stack
to build the correct query constraints; predicates in the FOL are also mapped to
their corresponding attribute names (SQL) or ontology properties (SPARQL).

The following summarizes the translation from a natural language question
to a SQL and SPARQL query via a FOL representation:

Natural Language Question: Drugs developed by Merck
FOL: all x.(drug(x) → (develop org drug(id0,x) & type(id0,Company) & label(id0,Merck)))
SQL Query: select drug.* from drug where drug.originator company name = ‘Merck’
SPARQL Query (prefixes are omitted):

select ?x
where {
?id0 rdfs:label ‘Merck’.
?id0 rdf:type example:Company .
?x rdf:type example:Drug .
?id0 example:develops ?x .
}

We execute the translated SQL queries using SQLite, a light weight relational
database management system that allows us to store the entire database as a
single file on disk. We run the SPARQL queries in a Jena TDB triple store4. An

3 http://www.antlr.org/
4 https://jena.apache.org



8 Dezhao Song, Frank Schilder, Charese Smiley, Chris Brew et al.

additional query is issued for SPARQL queries to retrieve all attribute values of
the entities in the result set.

5 Analytics Generation

This section details two different kinds of analytics that are generated for the
result set for a given question. We developed these analytics for the Cortellis
dataset (Section 2) and future work will include generating more analytics based
on the content type and the questions derived from different use cases.

Descriptive and comparative analytics. Query results are analyzed ac-
cording to the counts of the results, as shown in Figure 2. In addition to the
counts of the result set, descriptive analytics are also shown across different di-
mensions (e.g., indication, technology, action, etc.) for drugs. Moreover, result
sets can be compared across these dimensions via related entities, such as compa-
nies. Figure 4 demonstrates a concrete example of comparative analytics. Here,
companies in the result set are compared against various phases of the drug de-
velopment. This chart shows that Signature Therapeutics has the most drugs in
the Discovery phase even though Pfizer has the most drugs across all phases.

Fig. 4. Comparing companies on the dimension of drug development phase for “Drugs
having a primary indication of pain”

Content analysis. We also developed content-based analytics. To support
this type of analytics, we applied named entity recognition (NER) and sentiment
analysis. For NER, we used the Stanford CoreNLP toolkit [12] to recognize per-
son, organization, and locations from the Reuters News Archive (RNA). There
are about 14 million documents and 147 million sentences in the entire RNA
dataset and the named entity recognition is done in a distributed environment
using Apache Spark. The entire process took roughly 48 hours and discovered
about 280 million entities. As a second step, we ran an open-source sentiment
analysis tool over the entire corpus [14]. Given an entity from the outcome of
the NER process, we retrieve documents from RNA that contain this entity. For
each document, we then find all sentences that contain this entity and perform
sentiment analysis on each of the sentences. The outcome for each sentence could
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Fig. 5. NER and Sentiment Analysis Results for Top-2 Companies in Question “com-
panies developing drugs having a primary indication of hypertension”

be: Positive, Neutral, or Negative. Finally, we determine the overall sentiment of
this document on the given entity by majority vote on the sentence-level results.

Figure 5 demonstrates our sentiment analysis results for the question Com-
panies developing drugs having an indication of Hypertension. Here, we pick the
top two companies that are most frequently mentioned in RNA in order to avoid
overwhelming users with a dense chart. When the mouse hovers over a data
point, the system displays the sentiment results. In this example, we can see
that in June 2014, there are 95 news articles that mention “Novartis AG”, with
81% of such documents having a positive sentiment towards the company.

6 Evaluation

In this section, we present the evaluation results of TR Discover. First, we eval-
uate the response time of the different components of TR Discover. Then, we
apply our proposed system to Task 2 (Biomedical question answering over inter-
linked data) of QALD-4 [19] to compare its precision and recall to state-of-the-art
question answering systems in the biomedical domain.

6.1 Runtime Evaluation

Dataset . We evaluate the runtime of the different components of TR Discover
on the Cortellis dataset, which consists of about 1.2 million entities. Our dataset
is actually integrated from three sources: Cortellis drug data, a Thomson Reuters
patent dataset, and DrugBank. Using string matching, we linked Cortellis’ com-
panies to patent assignees, and the drugs names between Cortellis and Drug-
Bank. Thus, complementary information from different sources can be presented
to users. The different entity types include Drug, Drug Target, Company, Tech-
nology, Patent, etc. Various types of relationships exist between the entities,
including Using (Drug uses Technology), Developing (Company develops Drug),
Headquartered in (Company headquartered in Country), etc.

Since we can translate the logical representation of a natural language ques-
tion to both SPARQL and SQL, we prepared two different data stores for our
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dataset. We store the Cortellis dataset into a relational database using SQLite;
and, in order to be able to run SPARQL queries, we convert the relational data
to triples and store them into a Jena TDB triple store. Take the above examples
again: Drug, Drug Target, Company, Technology, and Patent all become classes,
while Using, Developing, and Headquartered in become predicates in our RDF
data. This data transformation process produces about 12 million triples.

Random Question Generation . In order to evaluate the runtime of our
proposed system, we randomly generated a total number of 5,000 natural lan-
guage questions using our auto-suggest component (Section 3.2). Recall that
our auto-suggest module provides suggestions as potential next steps in order to
help users to complete their questions, thus making it also useful for generating
random testing questions. We give the auto-suggest module a starting point, e.g.
drugs, and then perform a depth-first search to uncover all possible questions.
At each depth, for each question segment, we randomly select b suggestions; we
then continue this search process with each of the b suggestions. By setting dif-
ferent depth limits, we generate questions with different levels of complexity (or
different number of verbs). Using this random question generation process, we
generated 1,000 natural language questions for each number of verbs from 1 to
5, thus 5,000 questions in total.

Runtime Results. We evaluate on a 16-core RedHat machine with 2.90GHz
CPU and 264GB of memory. Figure 6(a) shows the parsing time of natural lan-
guage questions. Although we adopt NLTK5 for parsing natural language ques-
tions in our system (by supplying NLTK with our own grammar and lexicon),
this evaluation is to show the practicability of the overall approach in potential
real-world scenarios. According to Figure 6(a), unless a question becomes truly
complicated (with 4 or 5 verbs), the parsing time is generally under 1 second.
One example question with 5 verbs could be Patents granted to companies head-
quartered in Australia developing drugs targeting Lectin mannose binding pro-
tein modulator using Absorption enhancer transdermal. Experts on the Cortellis
Team assure us that questions with more than 5 verbs are rare, thus we did
not evaluate questions beyond this level of complexity. Although the parsing
time increases as a question becomes more complicated, we did not observe an
exponential increase in our experiments.

Figure 6(b) shows the runtime for translating the FOL of a natural language
question to SPARQL and SQL queries. In general, for both SPARQL and SQL,
the translation time increases as the questions become more complicated, as the
FOL translation module needs to traverse bigger FOL parse trees. However, in
general, only a few milliseconds are needed for performing each translation, it
should not add much burden to the overall runtime of our system.

Finally, we demonstrate the query execution time of both SPARQL and SQL
in Figure 7. Generally speaking, SQL queries run faster than SPARQL queries
(for questions with up to 4 verbs). However, for really complicated questions
(i.e., those with 5 verbs), SQL queries took much longer to finish than SPARQL
queries did. One potential reason is that many joins are usually performed for

5 http://www.nltk.org/



TR Discover: Natural Language Question Answering for Linked Data 11

(a) Question Understanding (b) FOL Translation

Fig. 6. Runtime Evaluation: Question Understanding and FOL Translation

Fig. 7. Runtime Evaluation: SQL and SPARQL Query Execution

the SQL query of 5-verb questions, which could greatly slow down the query
execution process. Consider the above 5-verb question again, its SQL Translation
actually contains 6 joins between different tables.

6.2 Evaluation on the QALD-4 Benchmark

We also evaluate TR Discover on Task 2 (i.e. Biomedical question answering
over interlinked data) of QALD-4 [19], using the FOL to SPARQL translation.

Dataset . The QALD-4 competition provides an RDF dataset, training and
testing questions, and ground truth answers to the questions6. We loaded the
data into a Jena TDB triple store. We also materialized the triples based upon
owl:sameAs statements. For example, given explicit triples: a owl:sameAs b. b
hasPossibleDrug c., we then add the following triple a hasPossibleDrug c into our
triple store. By adding such additional triples, we then do not have to explicitly
add owl:sameAs triple patterns when performing SPARQL translation. We use
the competition’s online evaluation tool to calculate the precision and recall.
Our evaluation did not involve any human evaluators.

6 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=

task2&q=4
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Evaluation Results. In Table 1, for the training questions, TR Discover
was able to achieve a comparable recall to the state-of-the-art systems but with a
much lower precision. The main reason for having low precision is that we added
the materialized triples according to the owl:sameAs statements in the original
dataset. Many of the returned results of TR Discover are actually correct, but
they are not in the provided ground truth. They are linked (either explicitly or
implicitly) to the instances in the ground truth via owl:sameAs statements. In
order to report on a more realistic precision number, we augmented the ground
truth by adding the equivalent instances to those already in the ground truth
and achieved higher performance: 80% of precision and 92% of recall, i.e., TR
Discover+. Similar to the training set, TR Discover+ also achieves a much better
precision by using the augmented ground truth on the testing set. For TR Dis-
cover+, we implemented an evaluation tool in Java; our evaluation tool produces
the exact results for TR Discover as the online evaluation tool does.

Table 1. Evaluation Results on Task 2 of the QALD-4 Benchmarck

Dataset System Precision Recall F1 Dataset System Precision Recall F1

Training

TR Discover 0.44 0.88 0.58

Testing

TR Discover 0.34 0.80 0.48
TR Discover+ 0.80 0.92 0.85 TR Discover+ 0.75 0.84 0.79
GFMed [13] N/A N/A N/A GFMed [13] 1.00 0.99 0.99
POMELO [8] 0.83 0.87 0.85 POMELO [8] 0.82 0.87 0.85
RO FII [19] N/A N/A N/A RO FII [19] 0.16 0.16 0.16

* We did not find the publication of RO FII. Please refer to the QALD-4 paper for details.

In Table 1, we employ fuzzy string matching on literal values. Here, we also
study the impact of adopting exact string matching on the performance of our
system. In Table 2, by employing fuzzy matching, we achieve higher recall. Al-

Table 2. Fuzzy String Matching (Fuzzy) vs. Exact String Matching (Exact) on Literals

Dataset System Precision Recall F1 Time (s) Dataset System Precision Recall F1 Time (s)

Training
Exact 0.87 0.88 0.87 7

Testing
Exact 0.55 0.67 0.60 3

Fuzzy 0.80 0.92 0.85 50 Fuzzy 0.75 0.84 0.79 20

though fuzzy matching results in lower precision on the training questions, the
overall F1-score was only slightly impacted. Different from the training questions,
fuzzy matching leads to a much better precision and recall on the testing ques-
tions, because the identified entities and literal values in the testing questions
often times do not match exactly with the underlying data. We also measure
the runtime of the two matching approaches, and it is natural to observe that
fuzzy matching requires a much longer time to perform the translated SPARQL
queries. When running queries on even larger datasets, the trade-off between
precision, recall, and runtime needs to be taken into account.
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6.3 Discussion

We presented TR Discover that can be used by non-technical professionals to ex-
plore complex interlinked datasets. TR Discover relies on a feature-based context
free grammar for question parsing. The grammar represents about 2 months of
design and experimentation, with approximately 60 grammar rules and 1 million
lexical entries. The lexical entries are automatically created using the attribute
values in our database, and only the grammar rules are handcrafted for question
types used in TR Discover. Our grammar covers conjunctions (and/or), noun
phrases with optional quantifiers (all and some), nominal and adjectival modi-
fiers, and verbal constructions. Given a new domain, the core grammar remains
stable and new lexical entries can be automatically added. The adaptation to
QALD-4 took roughly 30 person hours, including adding the types (e.g., en-
zymes, side-effects) and their relationships (e.g., associatedWith(gene, gene)),
and grammar rules to cover syntactic differences in the QALD-4 questions.

Furthermore, we perform some error analyses to study the questions that
TR Discover+ failed to answer properly. Our system has very low precision for
Training Question 5: “Which genes are associated with breast cancer?”. Our
system finds two Disease instances with the exact rdfs:label “breast cancer” and
returns their associated genes. However, the gold SPARQL query uses another
Disease instance http://www4.wiwiss.fu-berlin.de/diseasome/resource/

diseases/1669 with rdfs:label “Breast cancer-1” and returns its associated genes.
Consequently, our system gives many false positives to this question.

Our system also has difficulties understanding Training Question 14: “Give
me drug references of drugs targeting Prothrombin”. Our system interprets
two predicates from this question as follows: drug reference between drug and
drug reference, and target between drug and target. However, the gold SPARQL
query indicates that the drug reference predicate is actually between target and
drug reference. For such questions, additional domain expertise may be required
in order for us to build our question understanding module to achieve more ac-
curate parsing. A similar situation also applies to Testing Question 21: “Give me
the drug categories of Desoxyn”. Through our natural language question under-
standing process, we interpret one predicate from this question: brandName be-
tween drug category and the literal value “Desoxyn”; however, the gold SPARQL
query indicates that drug category should be an object property rather than a
class. This misinterpretation results in an empty result set for this question.

We also notice a potential error in the ground truth for Training Question 19:
“Which are the drugs whose side effects are associated with the gene TRPM6?”,
which looks for drugs that satisfy certain constraints. However, in the ground
truth, a Disease instance is given as the answer. The ground truth SPARQL
query also looks for diseases rather than drugs, thus we think there might be an
error in the ground truth for this question.

One limitation of TR Discover is that it lacks the ability to translate natural
language questions with quantifiers, e.g., Testing Question 3: “which drug has
the highest number of side effects?” Testing Question 14 and 23 are also of this
category. Also, negation is only supported with our SPARQL translation.
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7 Related Work

Keyword search [4, 6, 17] and faceted search [7, 23] have been frequently adopted
for retrieving information from knowledge bases (KB). However, users may have
to figure out the most effective queries in order to retrieve relevant information.
Furthermore, without appropriate ranking methods, users may be overwhelmed
by the information available in the search results. In contrast, our system allows
users to ask questions in natural language format, which enables users to express
their search requests in a more intuitive way.

Much of the prior work on question answering over linked data parses a
natural language question with various NLP techniques, maps the identified
entities, concepts and relationships to instances, classes and properties in an
ontology to construct a SPARQL query, and retrieves answers from a triple store
[9, 11, 15, 18, 21]. In addition to adopting fully automatic query parsing, CrowdQ
also incorporates crowd sourcing techniques for understanding natural language
questions [5]. Instead of only using structured data, HAWK [20] utilizes both
structured and unstructured data for answering natural language questions.

Significant efforts have also been devoted to developing question answering
systems in the biomedical research field [1]. Questions are first analyzed to iden-
tify entities (e.g., person, location, disease, gene, etc.) and relationships. The
identified entities are then mapped to concepts in a taxonomy/ontology or lin-
guistic resources for query expansion [10, 22]. An information retrieval query is
finally issued to an index to find matching documents, which are then ranked
and summarized to produce the final answer.

Compared to state-of-the-art systems, in this work, we maintain flexibility by
first parsing a question into First Order Logic, which is further translated into
both SPARQL and SQL. Using FOL allows us to be agnostic to which query
language (e.g., SQL and SPARQL) will be used later. We do not incorporate
any query language statements directly into the grammar, keeping our grammar
leaner and more flexible for adapting to other query languages. Furthermore, one
distinct feature of our system is that it helps users to build a complete question
by providing suggestions according to a partial question and a grammar. For
example, when users type in drugs, our system will suggest: developed by, having
a primary indication of, etc., since these are the options to form valid questions
according to our grammar. Finally, to the best of our knowledge, none of existing
NLIs provide dynamic analytics for the results. Given different types of entities
and their dimensions, our system performs descriptive analytics and comparisons
on various dimensions of the data, and conducts sentiment analysis. Such ana-
lytics would support users to better conduct further analyses and derive insights
from the data. Although ORAKEL [2] also maps a natural language question to
a logical representation, there is no auto-suggest and analytics provided to the
users. Compared to our prior work [16], in this paper, we provide a more fluent
user experience of auto-suggest, and we perform a thorough evaluation of our
system by examining the runtime of its various components and by comparing
to state-of-the-art systems on the QALD-4 Benchmark.
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8 Conclusion and Future Work

In this paper, we propose TR Discover, a natural language question answering
system over interlinked datasets. TR Discover was designed with non-technical
information professionals in mind in order to allow them fast and effective ac-
cess to large-scale interlinked datasets. Going beyond keyword-based search, TR
Discover produces precise result sets and generates analytics for natural lan-
guage questions asked by information professionals, such as journalists or patent
lawyers. Rather than asking users to provide an entire question on their own,
TR Discover provides suggestions (i.e., auto-suggest) in order to facilitate this
question building process. Given a completed natural language question, TR
Discover first parses it into its First Order Logic (FOL) representation, by us-
ing a feature-based grammar with full formal semantics derived from interlinked
datasets. By further translating the FOL representation of a natural language
question into different executable queries (SPARQL and SQL), our system re-
trieves answers from the underlying data stores and generates corresponding
analytics for the results. Through our runtime evaluation, we show that the
overall response time of TR Discover is generally acceptable (< 2 seconds). TR
Discover also achieves comparable precision and recall to that of state-of-the-art
question answering systems on the QALD-4 benchmark. In future work, we plan
to develop personalized auto-suggestion by using user query logs, and apply TR
Discover on more and larger datasets to examine the response time of its vari-
ous components. Furthermore, it would be interesting to seek feedback from real
users on the performance and usability of our system. Finally, we plan to better
handle synonyms, e.g., “medicines” for “drugs’.
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