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Abstract. The increasing amount of data on the Web, in particular of Linked
Data, has led to a diverse landscape of datasets, which make entity retrieval a chal-
lenging task. Explicit cross-dataset links, for instance to indicate co-references or
related entities can significantly improve entity retrieval. However, only a small
fraction of entities are interlinked through explicit statements. In this paper, we
propose a two-fold entity retrieval approach. In a first, offline preprocessing step,
we cluster entities based on the x–means and spectral clustering algorithms. In
the second step, we propose an optimized retrieval model which takes advantage
of our precomputed clusters. For a given set of entities retrieved by the BM25F
retrieval approach and a given user query, we further expand the result set with
relevant entities by considering features of the queries, entities and the precom-
puted clusters. Finally, we re-rank the expanded result set with respect to the
relevance to the query. We perform a thorough experimental evaluation on the
Billions Triple Challenge (BTC12) dataset. The proposed approach shows signif-
icant improvements compared to the baseline and state of the art approaches.

1 Introduction

The emergence of the Web of Data, particularly supported through W3C standards such
as RDF and the Linked Data principles [2], has led to a wide range of semi-structured
RDF data being available on the Web. Data is spread across datasets, complemented
through a growing amount of entities as part of structured annotations of Web docu-
ments, using RDFa or Microformats. Recent studies have shown that approximately
26% of pages already contain structured annotations [19].

Web data forms a highly heterogeneous knowledge-graph spanning an estimated
100 billion triples [17], with a wide variety of languages, schemas, domains and top-
ics [7]. Even though a large number of entities and concepts are highly overlapping, that
is they represent the same or related concepts, explicit links are still limited and often
concentrated within large established knowledge graphs, like DBpedia [1].

The entity-centric nature of the Web of data has led to a shift towards tasks re-
lated to entity and object retrieval [3, 21] or entity-driven text summarization [6]. Major
search engine providers such as Google and Yahoo! already exploit such data to fa-
cilitate semantic search using knowledge graphs, or as part of similar efforts such as
the EntityCube-Renlifang project at Microsoft Research [14]. In such scenarios, data is
aggregated from a range of sources calling for efficient means to search and retrieve
entities in large data graphs. Specifically, entity retrieval (also known as Ad-Hoc Ob-
ject retrieval) [17, 21] aims at retrieving relevant entities given a user query. The result



is a ranked list of entities [3]. By simply applying standard keyword search algorithms,
like the BM25F, promising results can be achieved. A common practice is to construct
indexes over the textual descriptions (literals) of entities.

In most cases, queries are entity centric. However, there are a large number of
queries that are also topic-based, e.g. ‘U.S. Presidents’. Therefore, approaches
like [21] have proposed retrieval techniques that make use of the explicit links between
entities in the WoD for results or query expansion. For instance, following owl:sameAs
or rdfs:seeAlso predicates from dbp:Barack Obama, one can retrieve co-references
or highly related entities. However, considering the size of the WoD such statements
are very sparse (see Figure 1a).

In this work, we propose a method for improving entity retrieval results in two
aspects. We improve the task by expanding and re-ranking the result set from a baseline
retrieval model (BM25F). Sparsity of explicit links is addressed through clustering of
entities based on their similarity, using a combination of lexical and structural features.
Consequently, we expand the result set with additional entities from the cluster space
(clusters with which the baseline entities are associated), retrieved from the baseline.

For the expanded result set, there is a need for re-ranking. The re-ranking con-
siders the similarity of entities to the user query, and their relevance likelihood based
on the corresponding entity type, defined as query type affinity. We empirically model
the query type affinity between the entity type in a query (e.g. ‘Barack Obama’ isA
Person) and the entity types in the result set (see Section 3.2).

In terms of scalability and efficiency, the clustering process is carried out offline,
where we bucket entities of particular types together before clustering. This improves
the efficiency by reducing the run-time of the clustering algorithms (Section 4.2 and
7.3). The entity retrieval, expansion and re-ranking on the other hand are performed
online and the computational overhead is negligible (Section 5 and 7.3).

Our experimental evaluation is carried out on the BTC12 dataset [9], and using the
SemSearch1 query dataset. The individual steps in our approach are evaluated through
a reliable crowdsourced evaluation approach. The results show that the proposed ap-
proach outperforms existing basslines for the entity retrieval task.

The main contributions of our work are as follows: (a) an entity retrieval model
combining keyword search and entity clustering, and (b) an entity ranking model con-
sidering the query type affinity w.r.t the set of relevant entity types.

2 Related Work

A large portion of queries issued in Web search engines target entities or contain se-
mantic resources (such as types, relations and attributes) [17] as a primary intent. Con-
sequently, the identification of entity-centric queries has become of particular concern
for commercial search engines serving as a means to narrow the search space and to
provide contextual query results [12]. Thus, the traditional task of Ad-hoc Document
Retrieval (ADR) [11] is moving towards an entity retrieval task [17]. Hence, instead of
top–k document retrieval that match a keyword query, the task and therefore the results
are increasingly becoming entity-centric.

1 http://km.aifb.kit.edu/ws/semsearch10/



Following this direction, Tonon et al. [21] proposed a hybrid approach based on
query expansion and relevance feedback techniques on top of the BM25 ranking func-
tion to build an entity retrieval framework. In contrast to this work, we use the state-
of-the-art BM25F [5, 20] to assign varying degrees of importance to different parts of
a document. Further, through an offline pre-processing step we are able to infer links
between similar entities for the retrieval process. This is particularly important when
considering datasets that have less links between entities, a significant feature of the
work by Tonon et al [21]. Another advantage of adopting BM25F is penalising docu-
ments/entities, consisting of long textual literals, in the final ranking [10]. Sindice [15]
is another approach focusing on indexing RDF documents. It supports data discovery
and integration by taking advantage of DBpedia entities as a source to actively index
resources. The process performed by Sindice plays a key role in centralising disparate
data sources on the Web. The adoption of entities and foremost entity types (topics) is
also supported by [3] in the recommendation of entities in Web search. Our approach
can benefit Sindice by indexing documents following a topic-based fashion.

Zhiltsov and Agichtein [23] propose a learning to rank approach, where they model
the relations between entities through a various set of features, such as language mod-
els and other query related features (e.g query length). Finally, through tensor matrix
factorisation they find latent similarities between entities, later used in their learning
to rank model. One major disadvantage of this approach is that it is supervised, hence,
unlikely to perform reasonably well on ad-hoc entity search tasks.

3 Approach and Overview

In this section, we motivate and define our work in the context of the addressed chal-
lenge, and provide an overview of our approach.

3.1 Preliminaries

The entity retrieval (ER) task, also known as ad-hoc object retrieval, is concerned with
retrieving a top–k ranked set of entities from dataset for a given a user query q. User
queries are typically entity centric. A dataset in our case is a set of triples 〈s, p,o〉,
where s is the subject (the URI of an entity), p is the predicate, and o is the object (a
URI or a literal). An entity profile of e is the set of triples sharing the same subject URI
s. The type of an entity is determined by the object of the triple te = 〈s, rdf:type,o〉.
Additionally, we define the query type tq, corresponding to the entity type in q, e.g.
‘Barack Obama’, hence tq hasType Person.

3.2 Motivation: Result Set Expansion and Query Affinity in Entity Retrieval

Recent studies [21] have shown that explicit similarity statements, which indicate some
form of similarity or equivalence between entities, for instance through predicates such
as owl:sameAs, are useful for improving entity retrieval results as retrieved through
approaches like BM25F, i.e. improving significantly on standard precision/recall met-
rics. However, such explicit similarity statements usually are sparse and often focused



towards a few well established datasets like DBpedia, Freebase etc. One main reason
is that these datasets represent known, and well structured graphs, which show a com-
parably high proportion of such dedicated similarity statements, in turn linking similar
entities within and beyond their original namespace.

In Figure 1a we show the total amount of explicit similarity state-
ments (on the x–axis) that interlink entities in the BTC12 dataset. Refer-
ring to [21], here we specifically consider triples of the form 〈e, p,e′〉 where
the predicate p ∈ {owl:sameAs, skos:related, dbp:wikiPageExternalLink,
dbp:wikiPageDisambiguates, dbp:synonym}. These are plotted against the total
number of object properties (y–axis), where each point in the plot represents a graph in
the BTC12 collection. From the figure, it is obvious that the number of explicit similar-
ity statements is very sparse, considering the size of the dataset.
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Fig. 1: (a) Number of explicit similarity statements in contrast to the frequency of object property
statements overall, shown for all data graphs. (b) Query type affinity shows the query type and
the corresponding entity types from the retrieved and relevant entities.

Nonetheless, missing links between entities can be partially remedied by comput-
ing their pair-wise similarity, thereby complementing statements like owl:sameAs or
skos:related. Given the semi-structured nature of RDF data, graph-based and lex-
ical features can be exploited for similarity computation. Particularly, lexical features
derived from literals provided by predicates such as rdfs:label or rdfs:description are
prevalent in LOD. Our analysis on the BTC12 dataset reveals that a large portion of
entities (around 90%) have an average literal length of 50 characters.

Furthermore, while the query type usually is not considered in state of the art ER
methods, we investigated its correlation with the corresponding entity types from the
query result set. We refer to a ground truth2 using the BTC10 dataset. We focus only on
relevant entities for q. We analyze the query type affinity of the result sets by assessing
the likelihood of an entity in the results to be of the same type as the query type. Fig-
ure 1b shows the query type affinity. On the x-axis we show the query type, whereas
on the y-axis the corresponding relevant entity types are shown. Figure 1b shows that

2 http://km.aifb.uni-karlsruhe.de/ws/semsearch10/Files/assess



most queries have high affinity with a specific entity type, with the difference being the
query type Person, where relevant entities have a wider range of types.

Our work exploits such query type affinity to improve the ranking of entities for a
query q (see Section 5). Based on these observations, we argue that (a) entity clustering
can remedy the lack of existing linking statements and (b) entity re-ranking considering
the query type affinity are likely to improve the entity retrieval task.

3.3 Approach Overview

In this work we propose a novel approach for the entity retrieval task which builds on the
observations described earlier. Figure 2 shows an overview of the proposed approach.
The individual steps are outlined below and described in detail in Section 4 and 5. We
distinguish between two main steps: (I) offline pre-processing, including step I.a and I.b
in the following overview, and (II) online entity retrieval, covered by steps II.a to II.c.

BTC
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Fig. 2: Overview of the entity retrieval approach.

I.a Entity Feature Vectors: We construct the entity feature vector as follows:
F(e) = {W1(e),W2(e),φ}, where W1(e) and W2(e) represent the unigrams and bi-
grams extracted from literals of e, and φ represents the structural features.

I.b Entity Bucketing & Clustering: is used to compute implicit relationships be-
tween entities emerging from their feature vectors. For the sake of efficiency, before
we proceed with entity clustering, we exploit the locality-sensitive hashing (LSH) algo-
rithm for bucketing.

II.a Query Analysis: As part of the retrieval task, we initially analyse the given
user queries q. From the query terms, which typically represent named entities, we
determine the type of the named entity, e.g. ‘Location’ in order to support the query
type affinity-based reranking at a later stage.

II.b Entity Retrieval: In the retrieval process, we rely on a combination of standard
IR approaches, like BM25F and further expand the result set with entities showing a
high similarity according to the computed clusters.

II.c Entity Ranking. In the final step, we rank the expanded entity result set for q,
taking into account similarity to the query and the modelled query type affinity.

4 Data Pre-processing and Entity Clustering

In this section, we describe the offline pre-processing to cluster entities and remedy the
sparsity of explicit entity links.



4.1 Entity Feature Vectors

Entity similarity is measured based on a set of structural and lexical features, denoted
by the entity feature vector F(e). The features for clustering are described below.

Lexical Features: We consider a weighted set of unigrams and bigrams for an entity
e, by extracting all textual literals used to describe e denoted as W1(e) and W2(e). The
weights are computed using the standard tf–idf metric. Lexical features represent core
features when considering the entity retrieval task, more so for the clustering process.
A high lexical similarity between an entity pair is a good indicator for expanding the
result set from the corresponding cluster space.

Structural Features: The feature set φ(e) considers the set of all object properties
that describe e. The range of values for the structural features is φ(o,e)→ [0,1], i.e., to
indicate if a object value is present in e. Feature Space: To reduce the feature space,
we filter out items from the lexical and structural features that occur with low frequency
across entities and presumably, have a very low impact on the clustering process due to
their scanty occurrence.

4.2 Entity Bucketing & Clustering

Entity Bucketing. In this step we bucket entities of a given entity type by computing
their MinHash signature, which is used thereafter by the LSH algorithm [18]. This step
is necessary as the number of entities is very large. In this way we reduce the number
of pair-wise comparisons for the entity clustering, and limit it to only the set of entities
within a bucket. Depending on the clustering algorithm, the impact of bucketing on
the clustering scalability varies. Since the LSH algorithm itself has linear complexity,
bucketing entities presents a scalable approach considering the size of datasets in our
experimental evaluation. A detailed analysis is presented in Section 7.

Entity Clustering. Based on the computed feature vectors, we perform entity clus-
tering for the individual entity types and the computed LSH buckets. Taking into ac-
count scalability aspects of such a clustering process we consider mainly two clustering
approaches: (i) X–means and (ii) Spectral Clustering. In both approaches we use Eu-
clidean distance as the similarity metric. The dimensions of the Euclidean distance are
the feature items in F(·). The similarity metric is formally defined in Equation 1.

d(e,e′) =
√

∑(F(e)−F(e′))2 (1)

where the sum aggregates over the union of feature items from F(e),F(e′). The outcome
of this process is a set of clusters C = {C1, . . . ,Cn}. The clustering process represents
a core part of our approach from which we expand the entity results set for a given
query, beyond the entities that are retrieved by a baseline as a starting point. The way
the clusters are computed has an impact on the entity retrieval task, thus we present a
thorough evaluation of cluster configurations in Section 7.1.

X–means To cluster entities bucketed together through the LSH algorithm and of
specific entity types, we adopt an extended version of k-means clustering, presented by
Pelleg et al. which estimates the number of clusters efficiently [16]. X–means overcomes
two major drawbacks of the standard k-means clustering algorithm; (i) computational



scalability, and (ii) the requirement to provide the number of clusters k beforehand. It
extends the k–means algorithm, such that a user only specifies a range [Kmin, Kmax] in
which the number of clusters, K, may reasonably lie in. The bounds for K in our case
are set to [2,50] clusters.

Spectral Clustering In order to proceed with the spectral clustering process, we
first construct the adjacency matrix A. The adjacency matrix corresponds to the simi-
larity between entity pairs d(e,e′) of a given entity type and bucket. Next, from A we
compute the unnormalised graph Laplacian [22] as defined in Equation 2:

L = diag(A)−A (2)

where, diag(A) corresponds to the diagonal matrix, i.e., diag(A)i,i = Ai, j for i = j.
From matrix L we are particularly interested in specific properties, which we use

for clustering and which are extracted from the eigenvectors and eigenvalues by per-
forming a singular value decomposition on L. The eigenvectors correspond to a square
matrix n×n, where each row represents the projected entity into a n-dimensional space.
Eigenvectors are later used to cluster entities using standard k–means algorithm.

However, an important aspect that has impact on the clustering accuracy, is the
number of dimensions considered for the k–means and the k itself. We adopt a heuristic
proposed in [22]. The number of dimensions that are used in the clustering step corre-
sponds to the first spike in the eigenvalue distribution. In addition, this heuristic is also
used to determine the number k for the clustering step.

5 Entity Retrieval - Expansion and Reranking

In this section, we describe the online process of entity retrieval, including the process
of expansion and re-ranking of the query result set.

5.1 Query-biased Results Expansion

Having obtained an initial result set Eb = {e1, . . . ,ek} through a state of the art ER
method (BM25f), the next step deals with expanding the result set for a given user
query. From entities in Eb, we extract their corresponding set of clusters C as computed
in the pre-processing stage. The result set is expanded with entities belonging to the
clusters in C. We denote the entities extracted from the clusters with Ec.

There are several precautions that need to be taken into account in this step. We
define two threshold parameters for expanding the result set. The first parameter, cluster
size, defines a threshold with respect to the number of entities belonging to a cluster. If
the number is above a specific threshold, we do not take into account entities from that
cluster. The underlying rationale is that clusters with a large number of entities tend to
be generic and less homogeneous, i.e. they tend to be a weak indicator of similarity. The
second parameter deals with the number of entities with which we expand the result set
for a given entity cluster. The entities are considered based on their distance to the entity
eb. We experimentally validate the two parameters in Section 7.

The fit of expanded entities ec ∈ Ec concerns their similarity to query q and the sim-
ilarity to eb, which serves as the starting point for the expansion of ec. We measure the



query-biased entity similarity in Equation 3, where the first component of the equation
measures the string distance of ec to q, that is ϕ(q,ec). Furthermore, this is done relative
to entity eb, such that if the eb is more similar to q, ϕ(q,eb) < ϕ(q,ec) the similarity
score will be increased, hence, the expanded entity ec will be penalized later on in the
ranking (note that we measure distance, therefore, the lower the sim(q,e) score the more
similar an entity is to q).

The second component represents the actual distance score d(eb,ec).

sim(q,ec) = λ
ϕ(q,ec)

ϕ(q,eb)
+(1−λ )d(eb,ec) (3)

We set the parameter λ = 0.5, such that entities are scored equally with respect to their
match to query q and the distance between entities, based on our baseline approach. The
main outcome of this step is to identify possibly relevant entities that have been missed
by the scoring function of BM25F. Such entities could be suggested as relevant from
the extensive clustering approaches that consider the structural and lexical similarity.

5.2 Query Analysis for Re-ranking

Following the motivation example in Figure 1b, an important factor on the re-ranking
of the result set is the query type affinity. It models the relevance likelihood of a given
entity type te for a specific query type tq. We give priority to entities that are most likely
to be relevant to the the given query type tq and are least likely to be relevant for other
query types t ′q. The probability distribution is modeled empirically based on a previous
dataset, BTC10. The score γ , we assign to any entity coming from the expanded result
set is computed as in Equation 4.

γ(te, tq) =
p(te|tq)

∑
t ′q 6=tq

(
1− p(te|t ′q)

) (4)

An additional factor we use in the re-ranking process is the context score. To better
understand the query intent, we decompose a query q into its named entities and addi-
tional contextual terms. An example is the query q = {‘harry potter movie’} from our
query set, in which case the contextual terms would be ‘movie’ and the named entity
‘Harry Potter’ respectively. In case of ambiguous queries, the contextual terms can fur-
ther help to determine the query intent. The context score (see Equation 5) indicates the
relevance of entity e to the contextual terms Cx of the query q. For entities with a high
number of textual literals, we focus on the main literals like labels, name etc.

context(q,e) =
1
|Cx| ∑

cx∈Cx
1e has cx (5)

5.3 Top–k Ranking Model

The final step in our entity retrieval approach, re-ranks the expanded entity result set
for a query q. The result set is the union of entities E = Eb∪Ec. In the case of entities
retrieved through the baseline approach e ∈ Eb, we simply re-use the original score, but
normalize the values between [0,1]. For entities from Ec we normalize the similarity



score relative to the rank of entity eb (the position of eb in the result set) which was
used to suggest ec. This boosts entities which are the result of expanding top-ranked
entities.

rank score(e) =

{
sim(q,e)
rank(eb)

if e ∈ Ec

bm25 f (q,e) otherwise
(6)

The final ranking score α(e, tq), for entity e and query type tq assigns higher rank
score in case the entity has high similarity with q and its type has high relevance like-
lihood of being relevant for query type tq. Finally, depending on the query set, in case
q contains contextual terms we can add context(q,e) by controlling the weight of λ (in
this case λ = 0.5).

α(e, tq) = λ (rank score(e)∗ γ(te, tq))+(1−λ )∗ context(q,e) (7)

The score α is computed for all entities in E. In this way based on observations of
similar cases in previous datasets, like the BTC10 we are able to rank higher entities of
certain types for specific queries.

6 Experimental Setup

Here we describe our experimental setup, specifically the datasets, baselines and the
ground truth. The setup and evaluation data are available for download3.

6.1 Evaluation Data

Dataset. In our experimental setup we use the BTC12 dataset [9]. It represents one
of the largest periodic crawls of Linked Data, also containing well-known knowledge
bases like Freebase and DBpedia. The overall statistics of the data are: (i) 1.4 billion
triples, (ii) 107,967 graphs, (iii) 3,321 entity types, and (iv) 454 million entities.

Entity Clusters. The statistics for the generated clusters are as follows: the average
number of entities fed into the LSH bucketing algorithm is 77,485, whereas the average
number of entities fed into x–means and spectral is 400. The number of generated entity
buckets by LSH is 20,2009, while the number of clusters for x–means and spectral is
13 and 38, with an average of 10 and 20 entities per cluster respectively.

Query Dataset. To evaluate our retrieval approach we use the SemSearch4 query
set from 2010 with 92 queries. The SemSearch query set is a standard collection for
evaluating entity retrieval tasks.

6.2 Baseline and State of the Art

Baseline. We distinguish between two cases for the original BM25F baseline: (i) Bt and
(ii) Bb. In the first case, we use the title or label of an entity as a query field, whereas in
the second case we use the full body of an entity (consisting of all textual literals). The
scoring of the fields is performed similar as in [5].

3 http://l3s.de/~fetahu/iswc2015/
4 http://km.aifb.kit.edu/ws/semsearch10/



State of the art. We consider the approach proposed in [21] as the state-of-the-
art. Similar to their experimental setup, we analyze two cases: (i) S1 and (ii) S2. S1
expands the entity set from the baseline approach with directly connected entities, and
S2 expands with entities up to the second hop. For further details we refer the reader to
[21]. In our experiments, we found that the S2 did not result in any significant change
in performance when compared to S1, and we therefore do not report further on S2.

Our approaches. We analyze two entity retrieval techniques from our approach.
The first is based on the x–means clustering approach, which we denote by XM. The
second technique is based on spectral clustering and is denoted by SP. In both cases, we
only expand the result set with entities coming from clusters with a total of ten entities
associated with a cluster (see Section 5.1), and finally add only the most relevant entity
based on the sim(q,ec) score.

BTC indexes. For the baseline, we generate a Lucene index, where we index entity
profiles on two fields title and body (consisting of all the textual literals of an entity).
The second index is an RDF index over the BTC dataset with support for SPARQL
queries, for which we use the RDF3X tool [13]. The first index is used for the baseline
approach, while the second for the state of the art approach.

6.3 Ground Truth for Evaluation of Entity Retrieval

For each query in the SemSearch2010 query set, we first establish the ground truth
through crowdsourcing. Crowdsourced evaluation campaigns for the task of ad-hoc ob-
ject retrieval have been shown to be reliable [4, 8]. For each of the 92 queries, we pool
the top 50 entities retrieved by the various methods, resulting in the top-k pooled entities
corresponding to the query. By doing so we generate 4,600 query-entity pairs.

We deploy atomic tasks in order to acquire relevance labels from the crowd for each
query-entity pair. We follow the key prescriptions for task design and deployment that
emerged from the work of Blanco et al. [4] to build a ground truth. Workers are asked
to assess the relevance of each retrieved entity to the corresponding query on a 5-point
Likert-type scale5.

We collect 5 judgements from different workers for each pair to ensure reliable rele-
vance assessments and discernible agreement between workers. This results in a total of
23,000 judgements. The final relevance of an entity is considered to be the aggregated
relevance score over the 5 judgements. We assess and compare the performance of the
different methods by relying on the ground truth thus generated (see Section 7).

6.4 Evaluation Metrics

Evaluation metrics assess the clustering accuracy and the retrieval performance.
Cluster Accuracy. As an initial evaluation, we assess the quality of our clusters.

From a set of entities belonging to the same cluster, the accuracy is measured as the
ratio of entities that belong together over the total number of entities in a cluster, where
assessments are obtained through crowdsourcing (see Section 7).

5 1:Not Relevant, 2:Slightly Relevant, 3:Moderately Relevant, 4:Fairly Relevant and 5:Highly
Relevant



Precision. P@k measures the precision at rank k, in our case k = {1, . . . ,10}. It is
measured as the ratio of retrieved and relevant entities up to rank k over the total number
of entities retrieved up to rank k.

Recall. R@k is measured as the ratio of retrieved and relevant entities up to rank
k over the total number of relevant entities up to rank k. The total number of relevant
entities for a query is determined by the relevance judgements on a large pool of entities.

Mean Average Precision. MAP provides an overall precision of a retrieval ap-
proach across all considered ranks.

Normalized Discounted Cumulative Gain. It takes into account the ranking of
entities generated using one of the retrieval approaches and compares it against the
ideal ranking in the ground truth.

nDCG@k =
DCG@k
iDCG@k

DCG@k = rel1 +
k

∑
i=2

reli
log2i

where DCG@k represents the discounted cumulative gain at rank k, and iDCG@k is
the ideal DCG@k computed from the ground truth.

7 Evaluation and Discussion

In this section we report evaluation results of the two main steps in our approach. We
first evaluate the quality of the pre-processing step, i.e., the clustering results for the
x–means and spectral clustering algorithms. Next, we present the findings from our
rigorous evaluation of the entity retrieval task.

7.1 Cluster Accuracy Evaluation

Considering the large number of clusters that are produced in the pre-processing step
for a given type and bucket, evaluating the accuracy and quality of all clusters is infea-
sible. We randomly select 10 entity types and 10 buckets, resulting in 100 clusters for
evaluation, where for each cluster we randomly select a maximum of 10 entities.

To evaluate the cluster accuracy, we deploy atomic microtasks modeled such that a
worker is presented with sets of 10 entities belonging to a cluster, along with a descrip-
tion of the entity in the form of the entity profile. The task of the worker is to pick the
odd entities out (if any). We gather 5 judgments from different workers for each cluster.
By enforcing restrictions available on the CrowdFlower platform, and following state
of the art task design recommendations, we ensure that we receive judgments from the
best workers (workers with high reputation as indicated by CrowdFlower).

Figure 3b presents our findings for the evaluation of the clustering process. We
note that for x–means and spectral clustering approaches, nearly 35% and 38% of the
clusters are judged to be perfect respectively (i.e., the entities within the cluster were all
found to belong together). 39% of the clusters corresponding to spectral clustering and
40% of the clusters corresponding to x-means, have an accuracy of 80%. Considering its
multidimensional representation of the entities, spectral clustering has higher accuracy
and it does not have clusters below 70% accuracy. The lowest accuracy of 70% for



spectral clustering implies that in each cluster there were only 3 entities that did not
belong to the cluster. The implications of an accurate clustering process become clearer
in the next section, where we assess the accuracy of finding relevant entities in the
generated entity clusters.
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Fig. 3: (a) Worker agreement on cluster accuracy for spectral and x–means clustering. (b) Cluster
accuracy for the spectral and x–means clustering approaches.

Figure 3a presents the pairwise agreement between workers on the quality of each
cluster. In case of the spectral clustering, we observe a high inter-worker agreement of
0.75 as per Krippendorf’s Alpha. We observe a moderate inter-worker agreement of 0.6
as per Krippendorf’s Alpha on the clusters resulting from x–means.

7.2 Entity Retrieval Evaluation

Figure 4a presents a detailed comparison between the P@k for the different methods.
The proposed approaches outperform the baseline and state of the art at all ranks. The
precision is highest at P@1 = 0.6 whereas for the later ranks it stabilizes at 0.4. In
contrast to our approach, the performance of the baseline and the state of the art is
more uniform, and is around P@k = 0.25. The best overall performing approach is the
retrieval approach based on spectral clustering SP. Table 1 shows the details about the
performance of the respective approaches as measured for our evaluation metrics.

An interesting observation is that for our approaches the best performance is
achieved when querying for the field title. In the case of the baseline, the best perfor-
mance is achieved when querying for the field body (Bb) while the same is inconclusive
in case of the state-of-the-art methods (S1t and S1b). We achieve a significantly higher
retrieval performance when using the title field. This can be explained by the fact that
entities that match a query on their title field when compared to those that match a query
on their body field, have a higher likelihood of being an exact match.

The high gain in performance through our methods (SP and XM) stems mainly from
the two steps in our approach. The first step expands the result set with relevant entities
as shown in Figure 4b. The figure shows the number of relevant entities corresponding
to the different grading scales as described in Section 7.1. In all cases we note that
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Fig. 4: (a) P@k for the different entity retrieval approaches under comparison. (b) The relevant
entity frequency based on their graded relevance (from 2-Slightly Relevant to 5-Highly Relevant)
for the different methods.

our methods find more relevant entities. The second step which re-ranks the expanded
result set helps in reducing the number of ‘non-relevant’ entities. We find that S1t has
a 14% decrease of non-relevant entities, whereas SPt and XMt depict a 35% decrease,
respectively. In second case where we query the body field, the number of ‘non-relevant’
entities for S1b decreases by about 13%, while SPb and XMb depict a 24% decrease.

Bt Bb S1t S1b SPt SPb XMt XMb

P@10 0.103 0.170 0.222 0.240 0.413 0.394 0.417 0.381
R@10 0.052 0.089 0.112 0.118 0.206 0.219 0.216 0.215
MAP 0.110 0.191 0.224 0.246 0.497 0.426 0.482 0.407
Avg(R) 0.031 0.058 0.063 0.074 0.132 0.133 0.131 0.130

Table 1: Performance of the different entity retrieval approaches. In all cases our approaches are
significantly better in terms of P/R (p < 0.05 measured for t-test) compared to baseline and state
of the art. There is no significant difference between SP and XM approaches.

We additionally analyze the performance of the entity retrieval approaches through
the NDCG@k metric. Figure 5 shows the NDCG scores. Similar to our findings for
P@k presented in Table 1, our approaches perform best for the query field title and
significantly outperform the approaches under comparison.

Next, we present observations concerning the different query types and the entity re-
sult set expansion (see Section 5.1) parameters. In Figure 6a we show the improvement
we gain in terms of MAP for the different query types. We observe that there is quite a
variance for the different query types, however, in nearly all cases, the biggest improve-
ment is achieved through the SP approach. Interestingly for the query type ‘Creative
Work’ the state of the art is nearly as good as the XM approach, whereas in the case
of ‘Weapon’ the baseline performs best. One possible explanation for this is that in the
case of ‘Creative Work’ the explicit entity similarity statements are abundant.
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Addressing the case of optimizing our retrieval approaches, SP and XM, we ex-
perimentally show the impact that the expansion of the result set has on the measured
performance metrics. Here, we show the impact on the average NDCG score. Figure 6b
shows the performance at average NDCG for the varying cluster size and number of
entities added (result set expansion) for every entity in Eb. The best performance is
achieved for a rather smaller cluster size ranging between 5 and 10 entities per cluster.
Regarding the number of entities with which the result set is expanded for every eb, the
best performance is achieved by expanding with one entity per cluster. The increase in
cluster size and number of entities attributes to a decrease in performance.
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Fig. 6: (a) The aggregated MAP for different query types and for the different retrieval ap-
proaches (note, we show the results for field body where baseline performs best). (b) The various
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7.3 Discussion

Scalability. In the pre-processing stage we introduced the clustering approaches, which
first bucket entities together based on the LSH algorithm. This particular step signifi-
cantly improves the scalability of such an offline step. If considering the x-means al-
gorithm, under the simplistic assumption that it represents the original k–means for



which the complexity is O(ndk+1log(n)) (we assume the number of dimensions for
the Euclidean space is fixed) for a fixed number of clusters and dimensions. Now,
clustering without the bucketing step, we would have around n = 77,485 entities for
clustering with an average of k = 13 clusters. Hence, O(77485d·13+1log(77485)) >
O(400d·13+1log(400)), where after bucketing we have on average n = 400. Thus, we
see a significant decrease in the runtime (while the complexity in theory remains of the
same magnitude). For the case of spectral clustering this is even more evident, where
for the adjacency matrix we consider n(n− 1)/2 entity pairs, and its singular value
decomposition (dependent on the algorithm used) is cubical in terms of big-O notation.

Crowdsourced Evaluation: Precautions. In order to ensure that we acquire reli-
able responses from the crowd workers, we take several precautions while designing
the tasks for the evaluation of clusters, as well as establishing the ground-truth for the
retrieval of entities. We provide clear instructions and examples to avoid misinterpre-
tations in the relevance scoring, leading to a bias in the judgements. We compensate
workers with monetary incentives that are proportionate to their contribution. In ad-
dition, we use gold standard questions as recommended by previous works to curtail
malicious activity.

Caveats and Limitations. Considering the optimization of the pre-processing step,
the process scales well even for large datasets like the BTC. The retrieval task itself is an
online process with no complex approaches and hence the corresponding computational
overhead is negligible for the user. We acknowledge the need to re-cluster entities peri-
odically in order to maintain a persistently good entity retrieval performance. However,
we believe that this is a relatively minor overhead, when compared to the improvement
in performance that it brings about, and given the fact that it is an offline process which
can be scaled using parallel infrastructure.

8 Conclusions and Future Work

In this work, we presented an approach to improve the performance of entity retrieval
on structured data. Building on existing state of the art methods, we follow an approach
consisting of offline preprocessing clustering, and online retrieval, results expansion
and reranking. Preprocessing exploits x–means and spectral clustering algorithms using
lexical as well as structural features. The clustering process was carried out on a large
set of entities (over 450 million). The evaluation of the clustering process shows that
over 80% of clusters have an accuracy of more than 80%. As part of the online entity
retrieval, for a given a starting result set of entities as retrieved by the baseline approach
BM25F we further expand the result set with relevant entities. Additionally, we propose
an entity ranking model that takes into account the query type affinity. Finally, we carry
out an extensive evaluation of the retrieval process using the SemSearch and the BTC12
datasets. The results show that our methods outperform the baseline and state of the art
approaches. In terms of standard IR metrics, our method in combination with one of
the clustering approaches, e.g. SPt improves over S1t with ∆P@10 =+0.19, ∆MAP =
+0.273 and ∆R@10 =+0.1.
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