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Abstract. It has been shown, both theoretically and empirically, that per-
forming core reasoning tasks on large and expressive ontologies in OWL 1 and
OWL 2 is time-consuming and resource-intensive. Moreover, due to the differ-
ent reasoning algorithms and optimisation techniques employed, each reasoner
may be efficient for ontologies with different characteristics. In this paper, we
present R2O2, a meta-reasoner that automatically combines, ranks and selects
from a number of state-of-the-art OWL 2 DL reasoners to achieve high effi-
ciency, making use of performance prediction models and ranking models. Our
comprehensive evaluation on a large ontology corpus shows that RaOx signifi-
cantly and consistently outperforms 6 state-of-the-art OWL 2 DL reasoners on
average performance, with an average speedup of up to 14x. R2O2 also shows
a 1.4x speedup over Konclude, the current dominant OWL 2 DL reasoner.

1 Introduction

Core reasoning services such as consistency checking and classification are at the heart
of ontology-based applications. For expressive description logics (DLs), such reasoning
services have a very high worst-case complexity. For instance, satisfiability checking for
SROTIQ, the description logic underpinning OWL 2 DL, has worst-case complexity
of 2NExPTIME-complete [4]. Recent work has also demonstrated empirically [5,11,15]
that large and complex ontologies indeed pose a real computational challenge even
for state-of-the-art reasoners.

In the past decade, highly optimised ontology reasoners such as FaCT-++ [25],
HermiT [8] and Konclude [22] have been developed that are capable of reasoning
about highly expressive DLs. They implement different reasoning algorithms and
employ different sets of preprocessing and optimisation techniques. As a result, they
are optimised for certain, but not all ontologies. Dramatic differences in reasoning time
among reasoners, sometimes by up to four orders of magnitude, have been observed
for some ontologies [5]. Such disparities can cause significant and unnecessary loss
in productivity for developers and users of ontologies.

The robustness of ontology reasoners was recently investigated [10], with a particu-
lar focus on reasoning efficiency. It was observed that given a corpus of ontologies and
a number of state-of-the-art reasoners, it is highly likely that one of the reasoners per-
forms sufficiently well on any given ontology in the corpus. However, this virtual best



reasoner is only found a posteriori, and the paper did not discuss how the best reasoner
may be selected automatically. It only stated that this task is not straightforward.

The prediction of ontology reasoning performance was recently studied [15,17],
where a prediction model, either a classifier or a regression model, is trained for a
given reasoner to make predictions on reasoning time (discretised or actual) of a given
ontology. High prediction accuracy is achieved for some state-of-the-art reasoners.
These prediction models enable efficient and accurate estimation of a reasoner’s
performance on an ontology. However, it was not discussed how these models can
be used to improve reasoning efficiency.

Portfolio-based algorithm selection methods [13] have been successfully applied
to SAT and constraint satisfaction problems. The portfolio SAT solver SATvilla
has consistently outperformed single SAT solvers in many SAT competitions [30].
Compared to SAT, ontology languages are more expressive with the inclusion of
many more language constructs. As a result, it is more challenging to accurately
characterising ontology complexity. Moreover, the performance of a portfolio-based
algorithm heavily depends on the accuracy of performance prediction models, and
this dependency makes it difficult to further improve its efficiency.

Recently we conducted a preliminary study [14] on constructing a portfolio-based
OWL reasoner from six reasoners: FaCT+-+, HermiT, JFact, MORe, Pellet and
TrOWL. This preliminary study made use of classifiers that predict discretised
reasoning time. Evaluation shows that, for average performance, it outperforms all
of the component reasoners. However, due to increasing sizes of the bins (discretised
reasoning time), a best reasoner may not be identified. Moreover, Konclude, a dominant
OWL 2 DL reasoner was not included in the study, making its results less significant.

The above work motivates and enables us to propose RoOs, a meta-reasoner that
combines reasoners with their respective prediction models, and aims at determining
the most efficient reasoner for a given ontology. It achieves this by (1) training
prediction models for predicting actual reasoning time for all reasoners, (2) learning
ranking models (simply rankers) that automatically and efficiently rank the reasoners
according to their predicted reasoning performance, and (3) selecting a possible best
reasoner given the outputs of the rankers.

Our main contribution is the proposal of a novel meta-reasoner, RoOo, that
automatically and efficiently combines, ranks and selects OWL reasoners with the
aim of determining the most efficient reasoner for a given ontology. We conducted a
comprehensive evaluation on more than 2,000 ontologies and six state-of-the-art OWL
2 DL reasoners, including Konclude, the current dominant reasoner. The evaluation
shows that, for average performance over a large ontology corpus, RoOs significantly
and consistently outperforms all six reasoners, achieving an average speedup of up
to 14x, and a 1.4x speedup over Konclude. RoOs also outperforms the traditional
portfolio-based approach (that does not perform ranking) with a 1.5x speedup.

2 The Meta-reasoner R,0O,

R20s is a supervised meta-reasoner that utilises the state-of-the-art performance
prediction models of different reasoners and ranking models (or rankers). R2O2 encom-



passes a number of component reasoners and operates in two phases: offline training

and online reasoning. During the training phase, RoO5 trains rankers that rank compo-

nent reasoners on their predicted reasoning time data generated by performance predic-

tion models for these reasoners. After training is completed, RoO5 makes predictions

of the most efficient reasoners for unseen ontologies, and carries out actual reasoning.
More specifically, the training phase of RoOs is divided into two steps:

1. Given a set of training ontologies, each represented by values of ontology metrics,
and actual reasoning time for a set of reasoners on each ontology, the performance
prediction model of each reasoner is built, following the methodology in [17]. That
is, we build a Random Forest-based regression model for each reasoner with the
metrics as features (see Section 2.2).

2. Given another set of training ontologies (distinct from the ones used in the first
step), we generate a ranking matriz where each row represents the values of ontol-
ogy metrics and a ranking of the reasoners where the ranking is made according
to their predicted reasoning time. Rankers are then trained on this ranking matrix
to learn how the characteristics of an ontology represented by its metrics can be
optimally mapped to relative ordering of the predicted performance of reasoners
(see Section 2.3).

In the reasoning phase, given an unknown ontology, RoOs makes performance
predictions for all the component reasoners. RoO then ranks the reasoners according
to their predicted reasoning time. The rankings recommended by the trained rankers
are averaged across all the rankers to determine a unique rank for each reasoner. The
highest ranked reasoner will be eventually chosen to perform the reasoning task for
the ontology (see Section 2.4).

In the reasoning phase, in our context, RoOs’s main difference from the traditional
portfolio-based approach (denoted PR) in the spirit of SATvilla [31] is that PR always
selects the most efficient reasoner for any given ontology according to predicted reason-
ing time of all component reasoners. That is, given a new ontology, PR computes its
ontology metrics, estimates the predicted reasoning time of each component reasoner
using the corresponding prediction model, and recommends the reasoner predicted
to be the fastest. In contrast, RoO2 uses a best possible reasoner by recommending
the top ranked reasoner from an aggregation of the rankings of component reasoners,
according to their predicted reasoning time, estimated by the trained rankers. Our
evaluation shows that RoOs highly and consistently outperforms PR.

Learning rankers from preferences has recently received much attention in the ma-
chine learning community [6]. Contrary to the classification problems, in the ranking
matrix, a training example (i.e. an ontology) is not assigned a single label, but a set
of preferences of multiple labels representing reasoners, where one is preferred over
another according to their predicted reasoning performance (i.e., the more efficient
a reasoner is, the higher its rank is). Once a ranker is learned, our goal is to use it
in predicting the most likely relative ordering (i.e., ranking) of all reasoners under
consideration for unknown ontologies represented by their ontology metrics.

In our approach, the learning of our rankers is based on preference learning (6],
which is concerned with the acquisition of preference models from data. In general, the
goal of preference learning is to learn preference orders (i.e. rankings) of all possible



labels (i.e. performance prediction models) from a training example (i.e. ranking
matrix) and predict an ordering (i.e. ranking) to an unseen instance (i.e. ontology).
In the rest of this section, we describe how RyOs is built in more detail.

2.1 Notation Definition

The following notations will be used in the paper:

— Let R={ry,...,r,} be a set of n reasoners.
— Let R={r,...,7} bea set of n performance prediction models such that for
each reasoner r; € R, 7; € R predicts the actual reasoning time of r; on a given

ontology, i.e., 7; estimates the performance of r;.
— Let RM = {rmy,...,rm;,} be a set of m rankers. Each ranker produces a rank-

ing of the reasoners based on their predicted reasoning performance for a given
ontology. Specifically, a ranker rm is a function that, given an ontology o and a
set of reasoners R, rm(o, R) produces an ordering, a permutation, of R.

— Let OM = {omy,...,omg} be a set of ¢ ontology metrics.

— Given a reasoner 7 (resp. a performance prediction model 7) and on ontology o,
let RT(r,0) (resp. RT(7,0)) represent the actual (resp. predicted) reasoning time
of r on o.

— Let O C O ={o01,...,0,} be aset of p ontologies that can be reasoned about by
at least one reasoner in R, i.e., for each o € O, there is at least one reasoner in R
that can successfully complete the reasoning task (e.g., classification) without any
errors and within the specified time limit. Note that O includes those ontologies
that timeout for some reasoners. Let O. C O be the set of common ontologies that
can be reasoned about by all reasoners in R (no errors and no timeout). Note that
O, also includes those ontologies that timeout for some reasoners. Two disjoint
subsets O, and O; are drawn from O, for training the rankers and testing R2Os,
respectively. Furthermore, for each reasoner r;, let set Op, € O\ (O, UO;) represent
a separate subset of ontologies that r; can successfully reason about, without timing
out. O, is used for training the performance prediction model 7; for reasoner r;.

2.2 Building Performance Prediction Models

For each reasoner r; € R, we train a Random Forest-based prediction model, a
regression model, i; € R on the training data Oy, with the aim of estimating the
actual, but not discretised, reasoning time of r;. Ontology metrics [17] are collected
for ontologies in O and used as features to train prediction models in R.

The produced prediction models in R will be used for generating a ranking matrix
to train the rankers in RM. R? (i.e. the coefficient of determination) is widely used
to assess the quality of regression models. In our context, R? indicates how well
each prediction model 7 approximates the actual reasoning time of the corresponding
reasoner r. It is possible that two different reasoners are predicted to have the same
reasoning time on a given ontology. R2 is used for tie-breaking purposes in RoOs,
which will be explained in Section 2.4.



2.3 Generating the Ranking Matrix and Training Rankers

Once the performance prediction models in R are built, a ranking matrix is constructed
for training the rankers in RM.

Recall that O, C O, is the set of common ontologies for training rankers. Initially,
we build a |O,| x (¢ +n) data matrix Mg (recall that |OM| = ¢, |R| = |R| = n),
where row ¢ represents o; € O, and is constructed as:

(omi’l, ey omi,q), (RT(?A"l, Oi>7 ey RT(?A"n, Oi)) (1)

~~ ~~
ontology metrics predicted reasoning time

where om; ; is the value of the j-th ontology metric om; of ontology o;, and RT (75, 0;)
denotes the reasoning time predicted by the prediction model #; for ontology o;.

Based on the data matrix Mg, we build the corresponding |O,.| X (¢ +n) ranking
matrix M., where row ¢ is represented as:

(omy1,...,0m;q), (T(F1,04),. .., 7(Fn,0:) ) (2)

~~ ~~
ontology metrics ranking of prediction models

where 7(7s,0;) denotes the rank of the prediction model 75 (hence the corresponding
reasoner r) on ontology o0;, determined by RT'(7,0;). In the ranking matrix M,., the
more efficient a performance prediction model is, the higher ranked it is (the smaller
the ranking number is).

For example, suppose that there are 3 reasoners {r1, ro, r3}, and thus 3 perfor-
mance prediction models {71, 72, 73 }. Given an ontology o;, suppose that the predicted
reasoning time for o; estimated by the models is 100s, 90s, and 10s respectively, i.e.,
(RT(71,0i), RT (2, 0;), RT(73,0;)) = (100s,90s, 10s). Thus, the ranking of the pre-
diction models is (7(71,0;), (72, 0;), ™(F3,0;)) = (3,2, 1). If the estimated reasoning
time is (10s, 10s, 100s) instead, the ranking produced will be (1,1, 3).

To recommend the most likely best reasoner, we note that our goal is not to predict
the absolute expected reasoning time of any component reasoner, but rather the rela-
tive performance of the reasoners. Therefore, we generate a ranking matrix using ontol-
ogy metrics and the rankings of the reasoners on the training data O,. to train rankers.

Once the ranking matrix M, is generated, each ranker rm; € RM is trained
on M,. In our context, the problem of learning a ranker is to induce a ranking
function f that can order n performance prediction models 71,...,7, € R. That is,
rm; € RM takes as input an ontology and a set of reasoners R, and produces as
output a permutation 7 of R. The interpretation of this permutation is that #; is
preferred to (more efficient than) 7; whenever RT(7;,0) < RT(7},0) for a given o.
These function rm; € RM are then used to estimate the rankings of the performance
prediction models for unknown ontologies.

Different ranking models that use different ranking measure to evaluate the per-
formance of the learned rankers [6]. Thus, the maximisation of the ranking measure
will lead to the maximisation of a ranker’s performance. Normalised Discounted



Cumulative Gain (NDCG) and Mean Average Precision (MAP) have often been used
to measure ranking performance [3].

Five ranking models are included: k-NN (the nearest neighbor-based approach),
RPC (the pairwise binary classification approach), BinaryART (the ranking tree-
based approach), ARTForests (the ranking forest-based approach), and RegRanker
(the regression-based approach). Readers interested in the details of the rankers are
referred to [23].

In this work, we apply rank average, a widely-used rank aggregation method
from a number of state-of-the-art rankers to induce the final ranking function f.
Experimentally we also observe that aggregation of such rankings usually leads to
better and more stable ranking performance.

2.4 Invoking the Meta-reasoner RO,

Once the rankers in RM are trained, for an unknown ontology, R3O combines the
rankings estimated by different trained rankers in RM to produce a final ranking, and
selects the best reasoner based on it, as given in Algorithm 1. A detailed description
is provided below.

Algorithm 1: Predict the most efficient reasoner in RyOs.

Input: o; a test ontology, RM = {rma,...,rmym} the learned rankers,
and 2 = {R*(71),..., R*(i'n)} the R? values of prediction models in R
Output: The most efficient reasoner 7pes: for ontology o
omy — generateOntologyM etrics(ot)
ranking < (0,...,0)
foreach rm; € RM do
L ranking; < recommendRanking(rm;, o)

oUW

ranking < mergeRanking(ranking, ranking;)

foreach 7; € R do
7 L (74, 0¢) « averageRanking(ranking, RM|, #;)

<]

8 ThestCandidate $— arg min ﬂ_(;']ﬁ Ot)

7;ER
9 if (lrbestCandidatc‘ 2 2) then
10 | Toest < tieBreaking(ToestCandidate, {2)

11 else
12 L Thest €= TbestCandidate

13 return rpes:

1. Given an unknown ontology oz, RoO> first calculates its values of ontology metrics
in OM (line 1).

2. Initialise a variable ranking as a sequence of 0’s, where the length of ranking is
|R\ = n. Intuitively, ranking keeps a merged ranking list of n prediction models
produced by the trained rankers in RM. For instance, for n = 3 prediction models



(reasoners) R = {7y, 73} with RT(#) < RT(i#) < RT(i3), ranking stores
their current ranking, and is a permutation of (1,2, 3) (line 2).

3. For each ranker rm; € RM, RyO; finds and merges the ranking of n predic-
tion models. The merge operation is implemented as a pointwise summation of
rankings produced by all rankers. For example, if n = 3 and ranking = (1,1, 3)
and a new ranking (1,2,3) is produced by a ranker, then ranking is merged as
(1,1,3) 4+ (1,2,3) = (2,3,6) (lines 3-5).

4. For each prediction model #; € R, R204 computes its average ranking from the

variable ranking over |[RM| (lines 6-7). Then, R2O3 selects the prediction model(s)
(TbestCandidate) Whose rank is the minimum. If only one top-ranked prediction
model 7, € R is selected, the corresponding reasoner r, € R is chosen to perform
the reasoning task for o; (line 12).
However, if two or more prediction models are selected, a tie-breaking method is
applied to select one of them (line 10). This method takes into consideration the
R? values of the prediction models that are described from Section 2.2. Our tie-
breaking finds the best possible prediction model 7 by identifying the prediction
model that is the most accurate:

1, = arg max R*(#;), 3)
™ER

where we choose #; that maximises its R? value R?(#;) (the higher the better).
Finally, RoO9 determines ri € R as e, and invokes it to perform reasoning for
the ontology o;.

3 Evaluation

3.1 Data Collection

For this work, we collected ontologies from the ORE 2014 reasoner competition [1],
comprising a total of 16,555 ontologies.! In our evaluation, we randomly choose 25%
of the ORE 2014 dataset by splitting it into four groups by percentiles of file size; and
randomly sampling from within these groups. This is to ensure that files of different
sizes are sufficiently represented. As a result, 4,138 ontologies were eventually used
in our evaluation.

Six state-of-the art OWL 2 DL reasoners that participated in ORE 2014 reasoner
competition are used as component reasoners for RoOs: FaCT++ [25], HermiT [§],
JFact,? Konclude [22], MORe [20] (with HermiT as the underlying OWL 2 DL
reasoner), and TrOWL [24].3 The versions of the reasoners are the same as those in
ORE 2014. The competition framework is adapted to invoke the reasoners and to
record their runtime.

' http://www.easychair.org/smart-program/VSL2014/0RE-index.html

2 http://jfact.sourceforge.net

3 The Chainsaw reasoner [26] (an OWL 2 DL reasoner that participated in ORE 2014)
is excluded due to reasoning errors in an excessive number of ontologies.



The reasoning time (for consistency checking and classification) of each reasoner
is measured for each ontology in the dataset on a high-performance server running
OS Linux 2.6.18 and Java 1.6 on two dual-core AMD Opteron 2218 processors each
at 2.6GHz, with a maximum of 10GB memory allocated to the reasoner. A timeout
of one hour wall-time is imposed on each (reasoner, ontology) pair.

Of the 4,138 ontologies, 2,847 ontologies (which we denote by O in Section 2.1)
are successfully reasoned by at least one reasoner (without errors and within the
one-hour time limit). In O, 2,407 ontologies are successfully reasoned by all the six
component reasoners, while the others encountered processing errors by at least one
reasoner. These 2,407 common ontologies constitute the dataset O..

A 10-fold cross validation is employed to adequately assess the performance of
R20s. In each fold, O is split according to Section 2.1. In the experiment, each of
Op,, O, and Oy is approximately 40%, 50% and 10% of the size of O respectively.
The performance evaluation results presented in the rest of this section is the average
across the 10 folds.*

Note that TrOWL is an approximate reasoner, hence it is sound but incomplete.
All the other five reasoners are sound and complete. As an approximate reasoner,
TrOWL gains efficiency by sacrificing completeness. This results in significant per-
formance gain, as can be seen in Table 1. Hence, to assess the impact of TrOWL’s
inclusion on RyO5’s performance, we conduct two sets of experiments, one with
TrOWL included and one without.

3.2 Trajning R2 02

Training the prediction models. Using the 91 ontology metrics proposed previ-
ously [32,17] and dataset O, a performance prediction model is trained for each
reasoner. Specifically, one Random Forest-based regression model (i.e., those in ]:2)
is trained for each of the six reasoners (i.e., those in R). All the regression models
in R are shown to be highly accurate, achieving high R? values that range from 0.73
(Konclude) to 0.91 (TrOWL).

Training the ranking models. Using the predicted reasoning time of the ontologies in
O, obtained from R as features, we trained five rankers (i.e., those in RM) specified
in Section 2.2. The performance of each ranker is evaluated in terms of precision at 1
(PQ1). For a ranker, PQ1 measures the proportion of the prediction model correctly
ranked as the fastest. All rankers show high performance, achieving a P@Q1 between
88.7% and 90.6%.

3.3 Performance Evaluation of R3O0

We also employ P@1 as a performance metric for evaluating RoOs. For RoO5, PQ1
measures the proportion of the component reasoner selected being the most efficient.
We choose PQ1 as we are only interested in evaluating how accurately RoO5 is able

4 Data associated with the evaluation can be found at http://www.csse.monash.
edu.au/~yli/r2o02/.



to recommend the single most efficient component reasoner, but not its ability to
generate a total ranked list of the reasoners.

Table 1. Performance comparison, with TrOWL included as a component reasoner, between
reasoners for Oy on: (1) average reasoning time per ontology (in seconds) for Oy, (2) average
percentage of ontology being the fatest (P@1), and (3) average number of timeout ontologies
per fold. The best performance values (lower is better) are typeset in bold. For comparison
purposes, performance figures for the virtual best reasoner (VBR) are also shown.

Reasoner Runtime in seconds (rank) % P@1 (rank)  No. timeout
FaCT++ 108.05 (7) 5.49 (4) 6.4
HermiT 75.31 (6) 0.00 (8) 3.9
JFact 239.93 (8) 0.07 (7) 124
Konclude 26.00 (4) 90.85 (2) 1.5
MORe 39.01 (5) 2.32 (5) 2.2
TrOWL 21.50 (2) 1.37 (6) 0.8
PR 24.24 (3) 90.00 (3) 1.5
R20: 17.52 (1) 91.30 (1) 1.0
VBR 2.94 (-) - 0.0

Table 2. Performance comparison, excluding TrOWL, between reasoners for O; on: (1)
average reasoning time per ontology (in seconds) for Oy, (2) average percentage of ontol-
ogy being the fatest (P@1), and (3) average number of timeout ontologies per fold. The
best performance values (lower is better) are typeset in bold. For comparison purposes,
performance figures for the virtual best reasoner (VBR) are also shown.

Reasoner Runtime in seconds (rank) % P@1 (rank)  No. timeout
FaCT++ 116.32 (6) 6.16 (4) 6.9
HermiT 79.39 (5) 0.11 (7) 41
JFact 234.4 (7) 0.14 (6) 13.2
Konclude 24.01 (2) 91.76 (2) 1.5
MORe 48.78 (4) 2.29 (5) 3.0
PR 24.36 (3) 90.53 (3) 15
R20: 16.46 (1) 92.25 (1) 0.9
VBR 7.52 () - 0.3

Besides the six component reasoners, we also compare RoOs against a Portfolio-
based reasoner (denoted PR) in the spirit of SATvilla [30] as well as the virtual best



reasoner (denoted VBR), which always selects the most efficient component reasoner
for any given ontology.

Table 1 and Table 2 show and compare the performance of RoO, against all the
other reasoners, across the 10 folds. TrOWL is in incomplete reasoner, and it gains effi-
ciency by ignoring/approximating certain difficult language constructs. Two sets of ex-
periments were conducted to assess the impact on performance of including TrOWL as
a component reasoner in RpOg, one with TrOWL (Table 1) and one without (Table 2).
For each reasoner r, three values are presented: (1) the average reasoning time per on-
tology (the lower the better), (2) the percentage of r being the most efficient (P@1, the
higher the better), and (3) the average number of ontologies timed out on r (the lower
the better) per fold. For R2Os, average ranking time per ontology is 0.03ms, trivial
compared to reasoning time. For (1) and (2) above, the rank of each reasoner is also
presented (the lower the better). As can be seen, in both experiments, R2Os is the clos-
est to VBR, and is more efficient than other reasoners with a speedup of up to 14x. It
can also be observed that RoOs times out on the smallest number of ontologies, which
shows that RoO3 is not only efficient, its performance is also stable (less fluctuations).

It can be observed that Konclude dominates the other component reasoners,
with a significantly faster reasoning time and a much larger percentage of being the
fastest. However, RoO5 outperforms Konclude in both experiments, with a speedup
of 1.48x and 1.46x respectively. This attests to the effectiveness of RoO5’s approach:
the combination of accurate performance prediction models and rankers successfully
identifies the rare cases when another reasoner is faster than Konclude, and improves
overall reasoning performance.

The evaluation also demonstrates the performance disparity among the reasoners.
For example, JFact has the largest average runtime. However, it is the fastest for
a small portion of ontologies, hence contributing to meta-reasoning. On the other
hand, HermiT has a much smaller average runtime, but with less contribution to
meta-reasoning. Moreover, even with a dominant reasoner such as Konclude, the other
reasoners do outperform it sometimes (approximately 10%), and the performance
of RoO4 as well as VBR validates the value of meta-reasoning: that the combination
of reasoners indeed improves reasoning performance.

The effect of TrOWL is a little surprising. The performance of both PR and RyO5
remain relatively unchanged with or without the inclusion of TrOWL. However, VBR
is significantly faster when TrOWL is included than when it is not, and it does not
timeout on any ontology. It seems to suggest that TrOWL indeed reduces reasoning
time for some hard ontologies. Further investigation is required to study the impact
on reasoning performance and completeness.

To better assess reasoning performance, Figure 1 below shows a boxplot depicting
the distributions of reasoning performance of the nine reasoners (including TrOWL and
VBR). In a boxplot, the box itself contains the middle 50% of the values, the median
(resp. mean) is represented by the horizontal bar (resp. ‘+’) inside the box. The upper
(resp. lower) whisker extends to the highest (resp. lowest) value within the upper (resp.
lower) quartile. The reasoning time of all ontologies (across 10 folds) are also shown as
dots in the plot to show their distributions. As can be seen, besides VBR, R2O5 has the
lowest mean as well as median values, demonstrating its efficiency as well as stability.
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Fig.1. A boxplot of the distributions of actual reasoning time (log-transformed) for the
nine reasoners.

From Table 1 above, among the component reasoners, it seems that Konclude and
TrOWL dominate the other component reasoners, as they are the fastest component
reasoners and faster than the others by a large margin. It seems to make intuitive
sense that they are the most efficient for most ontologies, and that RoO2 (and VBR)
selects these two reasoners most of the time as the most efficient reasoner. However,
this is not the case, as can be seen in Table 3 below. To better understand the reasoner
selection based on performance, we discretise ontology reasoning time (in seconds)
into four bins: ‘A’ (0, 1), ‘B’ [1, 10), ‘C’ [10, 100), and ‘D’ [100, 3,600]; and partition
ontologies into these bins by their reasoning time by VBR. For brevity reasons only
the figures for the experiment that includes TrOWL are shown. Note that in the
training of RoOs, actual, but not discretised, reasoning is predicted.

Table 3. The percentage of each component reasoner being the most efficient reasoner
(P@1=1) for each bin as well as for all the ontologies in O;. The highest percentage in each
bin is typeset in bold.

Reasoner A B C D All
FaCT++ 3.79 8.52 9.35 50.00 5.49
HermiT 0 0 0 0 0
JFaCT 0 0.25 0 0 0.07
Konclude 96.21 86.22 37.38 0.00 90.85
MORe 0.00 1.25 48.60 40.00 2.32

TrOWL 0.00 4.14 4.67 10.00 1.37




Table 3 shows the percentage each component reasoner being the most efficient
(P@1=1) for ontologies in each bin and overall. A number of interesting observations
can be made.

— Even though Konclude is the most efficient among the six reasoners, as can be
seen in Table 1, Konclude does not dominate the other reasoners in bins ‘C’ and
‘D’, the bins for most difficult ontologies. Furthermore, even though Konclude has
the fastest average runtime and overall PQ1 value, it is not the fastest for any of
the hardest ontologies (bin ‘D’).

— Even FaCT++ is only the fastest with a very small percentage overall (P@Q1=5.49%),
it is the fastest for half of the most difficult ontologies (bin ‘D’).

— MORe has an even smaller percentage of being the fastest overall (P@1=2.32%),
it is the fastest for 40% of the most difficult ontologies (bin ‘D’). It is also the
dominate reasoner for bin ‘C’.

4 Related Work

Boolean satisfiability checking, or SAT, is a well-known and widely studied NP-
complete decision problem. Many theoretical advances and practically useful heuristics
have been developed over the past decades. However, it is recently recognised that
the empirical hardness of NP-complete problems such as SAT [28,19)] is still not well
understood, and that theoretical, worst-case complexity analysis does not always pro-
vide useful insights on hardness of real-world problem instances. Hence, more research
is needed to understand the sources of instance hardness and reasons why certain
optimisations are effective while others are not, given a specific problem instance.

Ontology reasoning tasks such as consistency checking is a type of hard deci-
sion problems that may go beyond NP-hard. For very expressive DLs, ontology
reasoning has a very high worst-case complexity of 2NExPTIME-complete [4]. The
research community has recognised the importance of empirical studies given the
rapid development in ontology reasoning optimisation.

Ontology reasoners have been repeatedly benchmarked over the years [7,2,5,16].
It is observed from these benchmarking efforts that different reasoners have different
levels of support, robustness and efficiency for ontologies with different features (e.g.,
language constructs used and their interactions), confirming the need for further
investigation of sources of instance hardness.

Recently, the OWL Reasoner Evaluation (ORE) workshop series began an OWL
reasoner competition [9,1] on a number of reasoning tasks (consistency checking,
classification, and realisation) and for different profiles of the OWL language (OWL
2 DL and EL). The recent reasoner Konclude [22] is a novel parallellised OWL 2 DL
reasoner. It is very efficient, significantly outperforming other reasoners in the latest
ORE 2014 competition, winning 5 of the 6 categories. As part of the competition, the
ontology corpus and the competition framework have been made publicly available,
making it easy to reuse the data and to reproduce the results.

The empirical robustness of OWL reasoners was investigated [10]. A reasoner is
said to be successful for a given ontology if it successfully loads the ontology and
performs reasoning within a specified timeout cutoff (e.g., two hours). A reasoner



is robust if it is successful for at least 90% of a given corpus. Experiments on 4 OWL
reasoners and three corpora of ontologies revealed that the best combo, the virtual best
reasoner (or the meta-reasoner), is “extremely robust over all corpora” [10], achieving
an overall robustness of over 98% for all three corpora. However, such a meta-reasoner
was only identified manually and post festum.

Inspired by the success of empirical software engineering research, we proposed a
number of metrics to measure the design complexity of ontologies [32]. These metrics
measure various aspects of complexity: overall complexity of the ontology, complexity
of classes and properties, as well as those characterising complex class and property
expressions.

We studied the problem of estimating ontology reasoning time by applying ma-
chine learning techniques to building classifiers [15] and regression models [17] to
estimate (discretised or actual) reasoning time of a given (ontology, reasoner) pair.
High accuracy was achieved in both approaches, which were used to identify impor-
tant features that affect performance the most, and to identify performance hotspots
efficiently. An ontology is represented by a number of syntactic and structural metrics
that are efficient to calculate. These metrics are used as features to train classifiers
and regression models, one for each reasoner.

A different, local, reasoning performance prediction method was proposed in [21].
It decomposes an ontology into smaller subsets with increasing sizes, and then ex-
trapolates their performance to the entire ontology. The local approach does not
require a corpus, but instead does require repeated reasoner invocations over ontology
subsets. Using the k-NN classifier as a baseline, it was observed that using only
one metric, number of axioms, the local approach achieves comparable classification
performance with [15]. The local prediction approach can be regarded as an online
prediction approach as it needs to invoke reasoners on the subsets of growing sizes,
whereas [15,17] as well as this work are offline.

Understanding empirical hardness of ontologies has also garnered attention in re-
cent years. The identification of sources of ontologies in terms of performance hotspots
was investigated [11,17], where hotspots are found in a number of hard biomedical
ontologies. The removal of such hotspots dramatically reduces the reasoning time of
the remaining ontology. However, as a result, reasoning soundness and completeness
cannot be guaranteed.

Portfolio-based algorithm selection [13] has been successfully applied to combina-
torial optimisation and constraint satisfaction problems. SATZilla [30], for instance, a
portfolio SAT solver, has demonstrated higher efficiency over single solvers. Compared
to ontology languages OWL and OWL 2, k-SAT instances are described by a simpler
language, whereas OWL and OWL 2 contain many more language constructs (various
class expressions, property expressions and axioms). The richness of the ontology
languages make it difficult to define features to sufficiently describe characteristics of
ontologies. Moreover, SATZilla does not employ a ranking component but solely relies
on prediction models. Evaluation in Section 3 above shows that RoOs outperforms
a SATuilla-style portfolio reasoner, demonstrating the advantages of integrating a
ranking component.



Recently, preference learning [6] has been shown to be effective for developing
meta-learners with an aim to predicting the most efficient algorithm from a few
promising ones on different types of datasets such as those represented using meta-
features [23] and data streams [27]. In these studies, preference learning has been
demonstrated to significantly reduce optimisation time needed for choosing a best
model on a given dataset.

Often, ranking algorithms in preference learning use machine learning approaches
by analysing the association information between characteristics of a given dataset
(in our context, ontology metrics) and the relative performance of the available
algorithms. Such ranking algorithms include the algorithms proposed in [23] such as
the nearest neighbour-based approach, the pairwise binary classification approach,
the regression-based approach, the ranking tree-based approach and the ranking
forest-based approach. Also, the learning-to-rank approach [29] and the label ranking
approach [12] have been shown to be used for preference learning. In RoOs, we
utilise some of the ranking algorithms introduced in [23] to predict the most efficient
reasoners for a set of new ontologies. The incorporation of such a ranking component
demonstrably improves reasoning efficiency.

5 Conclusions

In this paper, we present RoO2, a novel meta-reasoner that combines component
reasoners in an efficient way, by automatically selecting the reasoner that is most likely
the most efficient for any given ontology. A key novel feature of our approach is the
incorporation of reasoner ranking to determine the best component reasoner according
to their predicted reasoning time. Another important feature is the use of prediction
models for ontology reasoners for estimating reasoning time. The performance of RoOx
is further improved by the incorporation of the second-order prediction (ranking),
as compared to the traditional portfolio-based meta-reasoning approach.

Our comprehensive, large-scale evaluation involving more than 4,000 ontologies
and 6 state-of-the-art OWL 2 DL reasoners—including the currently dominant rea-
soner Konclude—demonstrates the superiority of our meta-reasoner, in both efficiency
and stability. A speedup of up to 14x is achieved, with a 1.4x speedup over Konclude.
We show that RoOs achieves significant efficiency improvements over the 6 component
reasoners, as well as a SATzilla-style portfolio reasoner with a 1.5x speedup.

In future we will investigate novel prediction models and ranking models to
further improve their accuracy, as well as the performance of RoOs. We will study
the effectiveness of incorporting additional efficient reasoners such as ELK [18] that
provide efficient reasoning support of less expressive DLs. Moreover, we will also
investigate sources of instance hardness by studying similarity of ontologies that have
similar performance for a given reasoner.
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