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Abstract. Levesque’s proper knowledge bases (proper KBs) correspond to in-
finite sets of ground positive and negative facts, with the notable property that
for FOL formulas in a certain normal form, which includes conjunctive queries
and positive queries possibly extended with a controlled form of negation, entail-
ment reduces to formula evaluation. However proper KBs represent extensional
knowledge only. In description logic terms, they correspond to ABoxes. In this
paper, we augment them with DL-Lite TBoxes, expressing intensional knowledge
(i.e., the ontology of the domain). DL-Lite has the notable property that conjunc-
tive query answering over TBoxes and standard description logic ABoxes is re-
ducible to formula evaluation over the ABox only. Here, we investigate whether
such a property extends to ABoxes consisting of proper KBs. Specifically, we
consider two DL-Lite variants: DL-Literdfs , roughly corresponding to RDFS, and
DL-Litecore , roughly corresponding to OWL 2 QL. We show that when a DL-
Literdfs TBox is coupled with a proper KB, the TBox can be compiled away, re-
ducing query answering to evaluation on the proper KB alone. But this reduction
is no longer possible when we associate proper KBs with DL-Litecore TBoxes.
Indeed, we show that in the latter case, query answering even for conjunctive
queries becomes coNP-hard in data complexity.

1 Introduction

Many applications involving knowledge representation require an open-world setting,
with incomplete information on their domain of interest [2, 7, 15, 16]. In such condi-
tions, querying a knowledge base is typically based on logical inference, which is gen-
erally computationally infeasible. Indeed, the most successful applications of logics
in Computer Science, namely relational databases [1] and model checking [5] assume
complete information, and are based on the evaluation of logical formulas over a finite
model. In particular, evaluating a FOL formula against a database requires only a simple
recursive procedure and is indeed sub-polynomial (AC0) in data complexity (i.e., in the
computational complexity measured over the size of the database only). A natural ques-
tion is whether there are interesting cases in which logical inference, required to deal
with incomplete information, can be compiled into formula evaluation and hence retain
the deductive efficiency of database retrieval without requiring complete knowledge, as
with databases.



Based on this idea, Levesque [17] proposes the notion of a proper knowledge base
(proper KB), where incomplete knowledge amounts to a possibly infinite set of positive
or negative ground facts (without disjunctions or existentials), which allow for selec-
tively making open and close world assumption on (possibly part of the extension of)
single predicates. For this kind of KB he devises a reasoning procedure based on for-
mula evaluation that essentially has the efficiency of first-order logic evaluation over
a finite model (AC0 in data complexity). This evaluation procedure is logically sound,
and also complete when the formula is in a special normal form, called NF . This class
of formula notably includes conjunctive queries and positive queries, possibly extended
with a controlled form of negation. Proper KBs are further investigated in [19, 18, 12].

Compiling logical inference into evaluation is also at the base of one of the most
fruitful developments in description logics (DLs) [3] in the last decade, the introduction
of so called ontology-based query answering systems and the DL-Lite family [9, 10].
These logics are designed for retaining the data complexity of FOL evaluation, while
being able to capture most constructs used in UML Class Diagrams or Entity Relation-
ship Diagrams [6]. They generalize W3C RDF Schema (RDFS) [8, 14], and are at the
base of the OWL 2 QL profile of the W3C standard OWL 2 [20].

DLs consider knowledge divided into intensional knowledge and extensional knowl-
edge. Intensional knowledge is expressed as a TBox, i.e., a finite set of universal logical
assertions describing the domain of interest in terms of classes (called concepts), which
are unary predicates, and relationships between classes (called roles), which are binary
predicates. Extensional knowledge is expressed as an ABox, which consist of a finite set
of positive facts involving concepts and roles of the TBox. (Open-world semantics is as-
sumed.) Often the TBox is used to capture the ontology of the domain, while the ABox
is used to capture contingent knowledge on individuals belonging to the domain. The
main reasoning task of interest for the logics in the DL-Lite family is query answering,
that is, computing substitutions for the open variables in the query for which the result-
ing formulas are logically entailed by the TBox and the ABox. The queries typically
considered are conjunctive queries and the union of conjunctive queries. The first are
FOL formulas where only conjunction and existential quantification is allowed, while
the second include also disjunction (but, no forms of negation, nor universal quantifi-
cation). The key feature of the DLs belonging to the DL-Lite family is the so-called
first-order rewritability: query answering for a query Q can be performed in a sound
and complete way by compiling away the TBox into a new FOL query QT that can be
evaluated over the ABox, considered as a database. As the result, query answering in
DL-Lite is AC0 in data complexity like formula evaluation in a relational DB.

In this paper, we consider knowledge bases constituted by a TBox expressed in
variants of DL-Lite and an ABox consisting of a Levesque’s proper KB. In particular we
consider two members of the DL-Lite family: DL-Literdfs , which roughly correspond
to RDFS [14], and DL-Litecore , which roughly correspond to OWL 2 QL [9, 10]. The
latter is actually the simplest DL-Lite that includes assertions of the form A v ∃R.

We show that in the case of proper KBs extended with DL-Literdfs TBoxes, we can
compile away the TBox retaining soundness and completeness of reasoning, so that
when the resulting query is in NF , the proper KB evaluation procedure is both sound
and complete. (In particular, for conjunctive queries and union of conjunctive queries,
this is always be the case.) This theoretical result has an immediate practical impact: it



is possible to build effective ontology-based query aswering systems where: (i) RDFS
is used to express the ontology of the domain (considering that DL-Literdfs captures
the description logic fragment of RDFS, i.e., the fragment obtained by dropping RDFS
meta-modeling features); (ii) proper KBs are used to express extensional knowledge in
a very rich way, and (iii) SPARQL is used as a concrete query language for expressing
(NF) first-order queries [21].

Then we turn to DL-Litecore and show that, in this case, it is not possible to re-
duce query answering to FOL query evaluation. We do so by proving that even for
conjunctive queries, any sound and complete procedure must be coNP-hard, and hence,
the proper KB evaluation procedure remains sound but must necessarily be incom-
plete. This has the practical impact of ruling out the possibility of building sound, com-
plete and computationally tractable ontology-based query answering systems that adopt
OWL 2 QL as the ontology language.3

The rest of the paper is organized as follows. In Sections 2 and 3, we review
proper KBs and DL-Lite. In Section 4, we show soundness and completeness results for
TBoxes in DL-Literdfs . In Section 5, we show that moving to TBoxes in DL-Litecore ,
we lose the required computational tractability. Finally in Section 6, we draw some con-
clusions and discuss future work. An appendix with the detailed proof of the result in
Section 4 completes the paper.

2 Proper Knowledge Bases

Standard names. We use an ordinary first-order logical language L with an infinite
supply of predicate symbols (including =), an infinite supply of constants, called stan-
dard names (which we write as #1, #2, #3, . . .), and no other function or constant sym-
bols. We denote the set of standard names by N . We use the notation αxn to mean the
result of replacing every free occurrence of variable x in formula α by standard name
n. We adopt the usual Tarski semantics for L, with |= understood as normal logical en-
tailment. However, we make the unique name assumption for the standard names. This
means that we implicitly assume a theory of equality E formed by the usual axioms of
equality (reflexitivity, symmetry, transitivity, and substitution of equals for equals) to-
gether with {n 6= n′ | n and n′ are distinct standard names }. A knowledge base (KB)
K consists of a finite set of sentences (closed formulas) belonging to L. To K we will
always implicitly add the equality theory E . The (implicit) adoption of E implies that
K has a model iff it has a standard model, that is, one where = is interpreted as iden-
tity and the domain is isomorphic to the set of standard names. Hence, w.l.o.g., we can
make domain closure assumption: we can assume that the only objects in the domain
of interpretation are the standard names. A key property of adopting standard names is
the following.

Theorem 1. [17] Suppose that K is a KB (including E) and α a possibly open formula
in L. Let H be the set formed by all the (finitely many) standard names that appear in
K or α and at least one other not occurring in K and α. Then

K |= ∀x.α iff K |= αxn for every n ∈ H .

3 In fact, our infeasibility result applies also to EL, and hence rules out also OWL 2 EL [4, 20].



This means that we can determine whether ∀x.α is entailed by checking whether a finite
set of instances of α are entailed.

Proper KBs. Following [17], a proper knowledge base A is a finite collection of sen-
tences of L of the form

∀x.(e ⊃ %),

where

– e is an equality formula, i.e., a quantifier-free formula whose only predicate is
equality, and free variables are among x,

– % is P (x) or ¬P (x), for some predicate P of arity |x| in L,
– “⊃” is the usual material implication connective.

Proper KBs are required to be consistent (under the implicit equality theory for standard
names E). A proper KB can be seen as a finite representation for a possibly infinite
consistent set of ground literals { %θ | A |= %θ }, where θ is a substitution of free
variables by standard names, and %θ denotes % after the substitution.

Proper KBs can play the role of ABoxes typical of description logics (cf. 3), since
they express extensional knowledge as ABox do. Though, they generalize ABoxes in
several ways as exemplified below.

Using proper KBs, we can encode finite sets of positive facts (i.e., standard ABoxes),
saying that objects or tuples belong to predicates, but also we can encode negative facts
saying that objects or tuples do not belong to predicates. Indeed any finite set of ground
literals can be reformulated as a proper KB, by simply rewriting any ground literal %θ
in the set as ∀x. (x = xθ ⊃ %).

We can make the close-world assumption (like in databases) on selected predicates,
using assertions {∀x.(e(x) ⊃ P (x)), ∀x.(¬e(x) ⊃ ¬P (x))}. For example, the fol-
lowing proper KB

{∀x. (x = #2 ∨ x = #3 ∨ x = #5 ⊃ P (x)), ∀x. (x 6= #2 ∧ x 6= #3 ∧ x 6= #5 ⊃ ¬P (x))}

makes the closed-world assumption on P , saying that the extension of P is exactly
{#2, #3, #5}. This capability can be used, e.g., to describe an authoritative source, which
contains exactly all the data about the predicate P .

We can leave the status of some predicate open for some objects only. For example
we can write

∀x.(x 6= #0 ∧ · · · ∧ x 6= #9 ⊃ ¬P (x))

saying that only #0, . . . , #9 may belong to P , without saying which. This can be used to
circumscribe the presence of objects in certain data sources. Similarly we can write

∀x.(x 6= #0 ∧ x 6= #1 ⊃ ¬R(#100, x)) (1)

saying that the object #100 is not linked through R to any object different from #0 and
#1, leaving open whether R(#100, #0) or R(#100, #1) holds. More generally, proper KBs
can capture quite advanced forms of partial knowledge on the extension of data sources.



Reasoning with proper KBs. The reasoning task of interest for proper KBs is query
answering. In particular, as in [17], here we focus implicitly on boolean queries only.
A (boolean) query Q is a sentence, i.e., a closed formula, in L. Answering Q over a
proper KB A consists in checking the entailment

A |= Q.

It is in general undecidable to determine whether or notA |= Q. (Consider the caseA =
∅, where we still need to determine whether an arbitrary first order formula is valid.) As
an alternative, Levesque [17] proposes a limited reasoning procedure V analogous to
the evaluation function used for databases under the closed-world assumption, which,
however, may return 1 (known to be true), 0 (known to be false), or 1

2 (unknown). Given
a proper KB A and a query Q, the evaluation procedure V [A, Q] is defined as follows:

1. (Ground atomic fact) if Q = %θ then

V [A, %θ] =

1 if there is a ∀x.(e ⊃ %) ∈ A s.t. E |= eθ
0 if there is a ∀x.(e ⊃ %) ∈ A s.t. E |= eθ
1
2 otherwise

where % denotes the result of adding or removing negation from %.
2. (Ground equality atom) if Q = (n = n′) then

V [A, (n = n′)] =

{
1 if n and n′ are the same standard name
0 otherwise

3. (Negation) if Q = ¬α then

V [A,¬α] = 1− V [A, α]

4. (Disjunction) if Q = α ∨ β then

V [A, (α ∨ β)] = max {V [A, α], V [A, β]}

5. (Conjunction) if Q = α ∧ β then

V [A, (α ∧ β)] = min {V [A, α], V [A, β]}

6. (Existential quantification) if Q = ∃x.α then

V [A,∃x.α] = max
n∈H

V [A, αxn]

where H is the set of standard names appearing in A or α plus a new one.
7. (Universal quantification) if Q = ∀x.α then

V [A,∀x.α] = min
n∈H

V [A, αxn]

where again H is the set of standard names appearing in A or α plus a new one.



Notice that as expected we have that

V [A, α ∧ β] = V [A,¬(¬α ∨ ¬β)], V [A,∀x.α] = V [A,¬∃x.¬α].

The evaluation procedure V is tractable in a very strong sense. Analogously to database
evaluation, is is easy to see that V [A, Q] can be computed in AC0 in data complexity,
i.e., in the number of standard names mentioned in A and Q. From a more practical
point of view we have:

1. If e is a ground equality formula, then E |= e iff V [∅, e] = 1 and can be determined
in time linear in |e|.

2. V [A, %θ] can be determined in time linear in |A|: scanA for ∀x.(e ⊃ %) or ∀x.(e ⊃
%) and check if E |= eθ.

3. Overall, computing V [A, Q] can be made as efficient as database retrieval [19].

The procedure V is always logically sound:

Theorem 2. [17] For any proper KB A and any query Q in L, we have:

– if V [A, Q] = 1 then A |= Q;
– if V [A, Q] = 0 then A |= ¬Q.

However V is not (and cannot be) logically complete in general. For example: E |=
(p ∨ ¬p) but V [∅, (p ∨ ¬p)] = 1

2 .

In [17] completeness is shown for a semantically defined sublanguage of L, called
NF , for “normal form”. We say that a set of sentences S is logically separable iff for
every consistent set of ground literals L, if L∪ S has no standard model, then for some
α ∈ S, L ∪ {α } has no standard model. Then NF ⊆ L is defined as the least set such
that: (i) if α is a ground atom or equality formula, then α ∈ NF ; (ii) if α ∈ NF , then
¬α ∈ NF ; (iii) if S ⊆ NF , S is logically separable, and S is finite, then

∧
S ∈ NF ;

(iv) if S ⊆ NF , S is logically separable, and S = {αxn | n is a standard name }, then
∀x.α ∈ NF .

Theorem 3. [17] For any proper KB A and any Q in NF , we have:

– if A |= Q then V [A, Q] = 1;
– if A |= ¬Q then V [A, Q] = 0.

Unfortunately NF is a semantical condition and checking if a formula is in NF is
itself undecidable. However an interesting sufficient syntactic condition for belonging
toNF is the following: we say two literals are conflict-free iff either they have the same
polarity, or they use different predicates, or they use different standard names at some
argument position.

Theorem 4. [17] Let Q be a query in L, if all pairs of literals in Q are conflict-free,
then Q in NF .

Notably all positive queries (i.e., without ¬ and ∀), hence including conjunctive queries
(i.e., using only ∧ and ∃) and union of conjunctive queries (i.e., disjunctions of con-
junctive queries), are conflict-free.



3 DL-Literdfs and DL-Litecore

Description logics (DLs) [3] describe the domain of interest in terms of individuals
denoting objects, concepts, denoting sets of objects, and roles, denoting binary relations
between objects. In DLs, starting from concepts names (denoted by A) and roles names
(denoted by R), we can construct complex concepts C, D and roles ρ, τ by inductively
applying suitable constructors that depend on the DL in question.

A DL knowledge base K consists of a TBox T , expressing intensional knowledge,
and an ABox A, expressing extensional knowledge. TBox T is constituted by a finite
set of concept and role inclusions of the form

C v D, ρ v τ

where the form of concepts C,D and roles ρ, τ depend on the specific DL. We allow
inclusions to be cyclic, which is required in virtually all ontology-based and concep-
tual modeling applications4. A standard DL ABox A consists of a finite set of positive
ground literals involving concepts and roles of the TBox.

In this paper, we consider DL-Litecore , the simplest language of the DL-Lite family
[9, 10]. A TBox in DL-Litecore is a finite set of inclusion assertions of the form:

C v D, C v ¬D

where concepts C,D and roles ρ, τ are defined by the following syntax:

C,D ::= A | ∃ρ ρ ::= R | R−

where ∃ρ is the projection of binary role ρ on the first component and R− is the inverse
of role R. TBoxes expressed in DL-Litecore capture a core fragment of UML class di-
agrams: isa between classes (A v B, A and B are concepts names), typing of roles
(∃R v A, ∃R− v B), disjointness between classes (A v ¬B), and mandatory par-
ticipation of instances of a class to roles (A v ∃R or B v ∃R−), see [9]. DL-Litecore
roughly corresponds to OWL 2 QL profile [20], where we disallow the use of inclusion
assertion on roles ρ v τ .

Besides DL-Litecore , we consider also DL-Literdfs , which is obtained from DL-
Litecore by dropping the possibility of using ∃ρ on the right-hand side of inclusion
assertions, but including inclusion assertions on roles of the form:

ρ v τ

with ρ, τ ::= R | R−. Hence, we loose the possibility of expressing mandatory partici-
pation, but we gain the possibility of expressing “subproperties” through isa’s on roles,
thus capturing RDFS [8] (without meta-level assertions), interpreted according to the
extensional semantics [14].

We give the semantics of DL-Litecore and DL-Literdfs by exhibiting the FOL for-
mula corresponding to each concept and role expression. In particular, if t and t′ are
terms, then ρ[t, t′] is the first-order formula defined by

R[t, t′] = R(t, t′)
R−[t, t′] = R(t′, t).

4 When a TBox is acyclic, it can be treated as a set of abbreviations and eliminated w.l.o.g.



Similarly, C[t] is the first-order formula defined by (below z stands for any variable
such that z 6= t):

A[t] = A(t)
∃ρ[t] = ∃z.ρ[t, z]
¬A[t] = ¬A(t)
¬∃ρ[t] = ∀z.¬ρ[t, z].

Assertions of the form C v D and of the form ρ v τ correspond, respectively, to

∀x.(C[x] ⊃ D[x]) ∀x, y.(ρ[x, y] ⊃ τ [x, y])

Typically in DL-Lite, we are interested in query answering, where queries are con-
junctive queries or union of conjunctive queries. These are possibly open formulas ex-
pressed in terms of the concepts (unary predicates) and roles (binary predicate) of T
and A. When such formulas are closed we call such queries boolean. In particular, in
this paper, we focus on boolean queries only. Given a TBox T and ABox A, and a
(boolean) query Q we are interested in checking whether

T ∪ A |= Q

Notably the DL-Lite variants enjoy the first-order rewritability property, which in our
setting says that for every conjunctive query or union of conjunctive queries Q:

T ∪ A |= Q iff A |= QT

where QT is a union of conjunctive query obtained by rewriting Q using T , e.g., by the
reformulation algorithm in [9], so as to “compile away” the TBox T , and evaluate QT
over the ABoxA only, considered as a database (with complete information, i.e., closed
world assumption). As a result, query evaluation in DL-Lite is AC0 in data complexity,
i.e., in the size of the ABox.

4 Proper KBs with DL-Literdfs TBoxes

The question that this paper addresses is whether something analogous to DL-Lite first-
order rewritability holds also in the case of ABoxes consisting of proper KBs.

More precisely let’s consider KBs formed by a DL-Literdfs TBox T and an ABoxA
constituted by an proper KB over the unary and binary predicates forming the alphabet
of the TBox. We restrict our attentions to proper KBs A that are consistent with the
TBox T , i.e., that A 6|= ¬T where ¬T denotes the negation of the conjunction of all
assertions in the TBox T . On such KBs, we consider boolean queries Q, i.e., first-order
sentences, and we are interested in query answering, i.e., checking whether:

T ∪ A |= Q

In particular, we want to study whether there exists another FOL query QT such that

T ∪ A |= Q iff A |= QT

That is, we want to compile away the TBox and obtain another queryQT to ask over the
proper KBA alone. Notice that, differently from the case of standard DL-Lite,A cannot



be seen as a database, since it still includes incomplete information and the close world
assumption cannot be made. However if we can reduce T ∪ A |= Q to A |= QT , we
can then use the evaluation procedure V to compute V [A, QT ], which is always sound
and complete for queries in NF . Indeed we are also interested in sufficient conditions
for completeness. We show below that when T is a DL-Literdfs TBox, QT can always
be obtained. Moreover there are interesting class of queries Q (including conjunctive
queries, and union of conjunctive queries) for which the evaluation procedure V applied
to QT is indeed complete.

Without loss of generality we assume the query Q to be in negation normal form
(NNF), i.e., with negation appearing only in literals. We use the following notation: C
denotes the concept that results from adding or removing a negation from C, and ρ−

denotes the role that results from adding or removing a superscript minus from ρ.
Next we define two crucial relations vR and vC denoting the chain of “asserted”

inclusions among concepts and roles respectively.

– The vR relation holding between pairs of roles is the reflexive transitive closure of
the relation

{ (ρ, τ) | ρ v τ ∈ T or ρ− v τ− ∈ T }.
– The vC relation holding between pairs of concept is the reflexive transitive closure

of the relation

{ (C,D) | C v D ∈ T or D v C ∈ T or
C = ∃ρ, D = ∃τ, ρ vR τ }.

Note that, if C vC D then T |= ∀x.(C[x] ⊃ D[x]) and similarly, if ρ vR τ then
T |= ∀x, y.(ρ[x, y] ⊃ τ [x, y]).

With these two relations at hand, we can define the rewriting QT of a query Q wrt
a DL-Literdfs TBox T .

Definition 1 (Rewriting). Let T be a DL-Literdfs TBox and queryQ in NNF, we define
the rewriting QT of Q wrt T to be Q with every positive A(t) replaced by∨

CvCA

C[t],

every ¬A(t) replaced by ∨
AvCD

D[t],

every positive R(t, t′) replaced by ∨
ρvRR

ρ[t, t′],

and every ¬R(t, t′) replaced by∨
RvRτ

¬τ [t, t′] ∨
∨

∃RvCD

D[t] ∨
∨

∃R−vCD

D[t′].



As we show below, the resulting formula enjoys the desired property: it is the result
of compiling away the TBox from Q.

Theorem 5. Let T be a DL-Literdfs TBox, A be a proper KB consistent with T , Q a
boolean query in NNF, and QT its rewriting defined as above. Then

T ∪ A |= Q iff A |= QT

Proof. The proof requires extra machinery and has been moved to the appendix. �

In general, Theorem 5 does not induce an analogue of “first-order rewritability”, in
the sense thatQT cannot be “evaluated” over the ABoxA. However, ifQT isNF , then
it does, since the evaluation procedure V becomes sound and complete and hence it be-
comes sufficient to check whether V [A, QT ] to know whetherA |= QT . Unfortunately
checking whether QT is in NF is in general undecidable. However we can polyno-
mially check QT for conflict-freeness. We can exploit this for giving a nice sufficient
condition for the completeness of V .

Definition 2 (Conflict-free for a TBox). Let T be a DL-Literdfs TBox, Q a boolean
query in NNF and QT its rewriting defined as above. Q is conflict-free for a TBox T
iff QT is conflict-free.

Note that positive queries are always conflict free for DL-Literdfs TBoxes, including
conjunctive queries and union of conjunctive queries. For example, ifQ is a conjunctive
query thenQT is equivalent to a union of conjunctive queries, and hence is conflict-free.

For conflict free queries, we can exploit Theorem 5 and the soundness and com-
pletenes results for V to get:

Theorem 6. Let T be a DL-Literdfs TBox, A be a proper KB consistent with T , Q a
boolean query in NNF , and QT its rewriting defined as above. If Q is conflict-free for
T , we have:

– T ∪ A |= Q iff V [A, QT ] = 1;
– T ∪ A |= ¬Q iff V [A, QT ] = 0.

Hence, for queries that are conflict-free for the TBox, query answering reduces to eval-
uation and is indeed AC0 in data complexity (i.e., in the number of standard names
occurring in the ABox and in the query).

5 Proper KBs with DL-Litecore TBoxes

Next we investigate KBs formed by a DL-Litecore TBox T and an ABox A formed as
a proper KB. Unfortunately in this case we have a negative result: query answering by
evaluation is in general unachievable even for queries consisting of boolean conjunctive
queries. Indeed, if query aswering by evaluation were possible the data complexity of
query answering would be AC0. However we show that, even with a TBox consisting
of a single assertion of the form A v ∃R, conjunctive query answering in proper KBs
is coNP-hard in data complexity, since proper KB assertions like (1) in Section 2 force
reasoning by cases on the data.



Theorem 7. Conjunctive query answering in proper KBs with TBoxes including asser-
tions of the form

A v ∃R

is coNP-hard with respect to data complexity.

Proof. The proof is based on a reduction from 2 + 2-CNF unsatisfiability, which is
shown to be coNP-complete in [13]. A 2 + 2-CNF formula is a CNF formula in which
each clause has exactly four literals: two positive ones and two negative ones.

Given a 2+2-CNF formula F = c1∧· · ·∧cn, where ci = `i1+∨`i2+∨¬`i1−∨¬`i2−,
we associate with it the knowledge base K = 〈T ,A〉. The alphabet of K includes one
concept A and five roles P1, P2, N1, N2 and R with the following intuitive meaning:

– concept A(x) denotes that x is an atomic proposition;
– role P1(x, y) (resp. P2(x, y)) denotes that the atomic proposition y is in first (resp.

second) positive position of the clause x;
– roleN1(x, y) (resp.N2(x, y)) denotes that the atomic proposition y is in first (resp.

second) negative position of the clause x;
– role R(x, y) denotes that the truth value y is assigned to the atomic proposition x.

The TBox T is simply:
A v ∃R

The ABox A is formed by the proper KR equivalent to the following atomic assertions
(see examples in Section 2 for hints on how to represent these finitely using equality):

A(`11+), A(`12+), A(`11−), A(`12−),
· · ·
A(`n1+), A(`n2+), A(`n1−), A(`n2−),

P1(c1, `
1
1+), P2(c1, `

1
2+), N1(c1, `

1
1−), N2(c1, `

1
2−),

· · ·
P1(cn, `

n
1+), P2(cn, `

n
2+), N1(cn, `

n
1−), N2(cn, `

n
2−)

¬R(`11+,
#2),¬R(`11+,

#3),¬R(`11+,
#4), · · ·

¬R(`12+,
#2),¬R(`12+,

#3),¬R(`12+,
#4), · · ·
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#3),¬R(`11−,
#4), · · ·

¬R(`12−,
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· · ·
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where, c1, . . . , cn and `11+, `
1
2+, `

1
1−, `

1
2−, . . . , `

n
1+, `

n
2+, `

n
1−, `

n
2− are standard names

chosen to be different from each other. The standard names #0 and #1 are used to rep-
resent the truth values true and false respectively. Intuitively the binary predicates P1

P2, N1, N2 associate to clauses ci their four atomic propositions `i1+, `
i
2+, `

i
1−, `

i
2− in

their respective first/second, positive/negative position. The binary predicate R asso-
ciates truth values to atomic propositions, which given the infinite set of assertions of



the from ¬R(`, k) can only be either #0 or #1 for the atomic propositions mentioned in
the clauses.

Finally, we consider the following boolean conjunctive query:

Q = ∃x, y1+, y2+, y1−, y2−.
(P1(x, y1+) ∧R(y1+, #0) ∧ P2(x, y2+) ∧R(y2+, #0) ∧
N1(x, y1−) ∧R(y1−, #1) ∧N2(x, y2−) ∧R(y2−, #1))

Intuitively query Q checks if it is possible to assign the “wrong” truth value to all
propositions y1+, y2+, y1−, y2− of some clause x. More precisely, checking whether
T ∪A |= Q (i.e., whether the query is certainly true in T ∪A) corresponds to checking
whether in every truth assignment for the formula F there exists a clause whose positive
atomic propositions are interpreted as false and whose negative atomic propositions are
interpreted as true, i.e., a clause that is not satisfied. Next we show that the formula F
is unsatisfiable if and only if T ∪ A |= Q.

“⇒” Towards contradiction, suppose that the formula F is unsatisfiable but T ∪
A 6|= Q. Then there exists a model M such that M |= T ∪ A, but M 6|= Q. Notice that
the given the assertions inA the only way not to satisfy Q is that for each i = 1, . . . , n,
we have that either ¬R(`i1+, #0) or ¬R(`i2+, #0) or ¬R(`i1−, #1) or ¬R(`i2−, #1). On the
other hand for each such `i, by the TBox assertion A v ∃R, there must exists some
v such that R(`i, v), and because of the infinite assertions on ¬R(`i, #2), ¬R(`i, #3),
¬R(`i, #4), . . . it must be the case that v = #0 or v = #1. So we have that for each clause
ci we must have that R(`i1+,

#1) or R(`i2+,
#1) or R(`i1−,

#0) or R(`i2−,
#0). But this

would imply that the set of clauses F is indeed satisfiable, contradicting the hypotesis.
“⇐” Towards contradiction, suppose that T ∪A |= Q but the formula F is satisfied

by some truth assignment % to its atomic propositions. Then, let M% be the interpretation
for T ∪ A defined as follows:

AM% = {` | ` is an atomic proposition in F}
P

M%

1 = {(ci, `i1+) | in F , `i1+ is the first positive atomic proposition of ci}
P

M%

2 = {(ci, `i2+) | in F , `i2+ is the second positive atomic proposition of ci}
N

M%

1 = {(ci, `i1−) | in F ,`i1− is the first negative atomic proposition of ci}
N

M%

2 = {(ci, `i2−) | in F ,`i2− is the second negative atomic proposition of ci}
RM% = {(`, v) | %(`) = v}

It is easy to see that M% is a model of T ∪ A. On the other hand, since F is satisfiable,
for every clause in F there exists a positive atomic proposition interpreted as true or
a negative atomic proposition interpreted as false . It follows that for every (standard
name corresponding to) a clause ci, either P1 or P2 relates ci to a atomic proposition
` such that (`, #1) ∈ R and (`, #0) 6∈ R, or either N1 or N2 relates ci to a to a atomic
proposition ` such that (`, #0) ∈ R and (`, #1) 6∈ R. Hence Q evaluates to false in M%,
and therefore T ∪ A 6|= Q, contradicting the hypothesis. �

This theorem rules out DL-Litecore and virtually all variants of DL-Lite, which allow
for expressing A v ∃R, including the two most prominent ones: DL-LiteR, directly
corresponding to OWL 2 QL [20], and DL-LiteA, often used in ontology-based data
access applications [11]. For the same reason, it also rules out the whole EL family [4].



6 Conclusion

In this paper we have shown that is it feasible to extend Levesque’s proper KBs with
TBoxes expressed in DL-Literdfs while retaining the ability to reason by evaluating
formulas for first-order queries of certain forms and hence solve query answering in
AC0 in data complexity as for standard database query evaluation. This result is of
practical interest considering that DL-Literdfs captures the description logic fragment
of RDFS (i.e., dropping meta-modeling features) and that SPARQL can be used as a
concrete query language for expressing first-order queries over RDFS [21].

We also showed that this result cannot be generalized to TBoxes expressed in OWL
2 QL or any DL-Lite variant that allows for assertions of the form A v ∃R [9, 10],
including DL-Litecore , since when combined with the power of proper KBs, reasoning
by cases become necessary (query answering becomes coNP-hard). In fact, the result
applies also to the DL EL [4] and hence to OWL 2 EL [20] as well.

Our result on proper KBs with DL-Literdfs TBoxes could be slightly generalized.
In particular, it would be interesting to extend the TBox language, e.g., to deal with
assertions of the form ρ v ¬τ to express disjoint extension of roles, and getting closer
to OWL 2 QL [9, 20], or to by considering n-ary roles [10]. Also, the language of proper
KBs themselves can be extended, e.g., to deal with unknown individuals, i.e., nulls, as
in [12]. We leave these extensions for future studies.

A Appendix

In this appendix we prove Theorem 5. As ABox A we consider any set (possibly in-
finite) of assertions of the form A(n), R(n,m) and ¬A(n), ¬R(n,m), where n and
m are standard names. Notice that these ABoxes are more general then proper KBs
(which indeed correspond to certain ABoxes of this form). The TBox T is a standard
DL-Literdfs TBox. We assume A to be consistent with T (i.e., A 6|= ¬T .) We use the
following notation. If M is a logical interpretation, then the extension of a concept C
and a role ρ are respectively:

CM = {n | M |= C[n]}, ρM = {(n, n′) | M |= ρ[n, n′]}.

Note that for any C, C
M

= CM . For any concept C and role ρ, we define

MIN(C) = {n | A |= C[n]}, MIN(ρ) = {(n,m) | A |= ρ[n,m]}.

Note that for any M such that M |= A, MIN(C) ⊆ CM and MIN(ρ) ⊆ ρM . For any M
and C, we define

F (C) =
⋃

DvCC

E(D) where E(C) = MIN(C) ∪
⋂

CvCD

DM .

Note that for any C, MIN(C) ⊆ E(C) ⊆ F (C).

Lemma 1. If M |= A then F (C) ∩ F (C) = ∅.



Proof. Suppose not. Then there is n ∈ F (C) and n ∈ F (C). Then for some D vC C,
n ∈ E(D) and for some D′ vC C, n ∈ E(D′). Since we have D vC C and C vC D′

(which is contrapositive of D′ vC C), we also have D vC D′.
Now consider the cases for n ∈ E(D). If n ∈ MIN(D), then A |= D[n]. Since

A 6|= ¬T , A 6|= D′[n] and so n 6∈ MIN(D′). Moreover, since M |= A it follows
n ∈ DM , and hence n 6∈ D′M . Since by definition D′ vC D

′, we get n 6∈
⋂
D′vCE

EM .
This contradicts n ∈ E(D′).

On the other hand, if n ∈
⋂
DvCE

EM , then n ∈ D′M , so n 6∈ D′M . Since M |= A,
n 6∈ MIN(D′). Moreover n 6∈

⋂
D′vCE

EM , since D′ vC D
′. This again contradicts

n ∈ E(D′). �

For any M and ρ, we define

G(ρ) =
⋃
τvRρ

H (τ) where H (ρ) = MIN(ρ) ∪ [(E(∃ρ)× E(∃ρ−)) ∩
⋂
ρvRτ

τM ].

Lemma 2. G(ρ) ⊆ F (∃ρ)× F (∃ρ−).

Proof. We prove it for ρ = R. (The case of R− is analogous.) If (n,m) ∈ G(R) then
for some ρ vR R, (n,m) ∈ H (ρ). There are two cases: if (n,m) ∈ MIN(ρ), then
n ∈ MIN(∃ρ) and then m ∈ MIN(∃ρ−), in which case, n ∈ E(∃ρ) and m ∈ E(∃ρ−);
if (n,m) ∈ (E(∃ρ×E(∃ρ−)), then again n ∈ E(∃ρ) and m ∈ E(∃ρ−). Since ρ vR R,
∃ρ vC ∃R and ∃ρ− vC ∃R−. It follows that n ∈ F (∃R) and m ∈ F (∃R−). �

Given a logical interpretation M , we define a related one M ∗ by AM ∗= F (A) and
RM ∗= G(R).

Lemma 3. If M |= A then M ∗ |= T .

Proof. First suppose C v D ∈ T . Note that if C vC D, then {E | E vC C} ⊆ {E |
E vC D}, and so F (C) ⊆ F (D). Because of the restriction on the TBOX language,
C = A or C = ∃ρ. In the case of A, we have AM ∗ = F (A); in the case of ∃ρ, we
have ∃ρM ∗ ⊆ F (∃ρ) by Lemma 2. In both cases, CM ∗ ⊆ F (C). Similarly, because of
the language restriction, D = A or D = ¬A, and so either way F (D) ⊆ DM ∗ (since
F (¬A) ⊆ F (A) by Lemma 1). It then follows that CM ∗⊆ F (C) ⊆ F (D) ⊆ DM ∗.

Now suppose ρ v τ ∈ T . As above, we have that if ρ vR τ , then {ρ′ | ρ′ vR ρ} ⊆
{τ ′ | τ ′ vR τ}, and so G(ρ) ⊆ G(τ). It follows that ρM ∗= G(ρ) ⊆ G(τ) = τM ∗. �

Lemma 4. If M |= A then M ∗ |= A.

Proof. We consider the four cases of assertions in A.
Suppose A(n) ∈ A. Then n ∈ MIN(A), so n ∈ E(A) ⊆ F (A). Therefore, M ∗ |=

A(n).
Suppose ¬A(n) ∈ A. Then n ∈ MIN(¬A) and n 6∈ AM . Now suppose thatD vC A

for some D. Then n 6∈ MIN(D) since otherwise A |= ¬T . Since n 6∈ AM , n 6∈ E(D).
Since this holds for any D vC A, n 6∈ F (A) and hence M ∗ |= ¬A(n).

Suppose R(n,m) ∈ A. Then (n,m) ∈ MIN(R), so (n,m) ∈ H (R) ⊆ G(R).
Therefore, M ∗ |= R(n,m).



Finally, suppose ¬R(n,m) ∈ A. Then (n,m) 6∈ RM . Now suppose that τ vR R
for some τ . Then (n,m) 6∈ MIN(τ) since otherwise A |= ¬T . Since (n,m) 6∈ RM ,
(n,m) 6∈ H (τ). Since this holds for any τ vR R, (n,m) 6∈ G(R) and hence M ∗ |=
¬R(n,m). �

Lemma 5. T |= (QT ⊃ Q).

Proof. Assume that M |= T and prove by induction on |Q| that if M |= QT then
M |= Q. Here are the base cases only.

Suppose Q = A(n) and M |= QT . So for some C vC A, M |= C[n]. Since
M |= T , M |= A(n).

Suppose Q = ¬A(n) and M |= QT . So for some A vC D, M |= ¬D[n]. Since
M |= T , M |= ¬A(n).

Suppose Q = R(n,m) and M |= QT . So for some ρ vR R, M |= ρ[n,m]. Since
M |= T , M |= R(n,m).

Suppose Q = ¬R(n,m) and M |= QT . So one of the following: for some R vR τ ,
M |= ¬τ [n,m] or for some ∃R vC D, M |= ¬D[n] or for some ∃R− vC D, M |=
¬D[m]. In all cases, since M |= T , M |= ¬R(n,m). �

Lemma 6. If M |= A and M ∗ |= Q, then M |= QT .

Proof. The proof is by induction on |Q|. Here are the base cases only.
Suppose M ∗ |= A(n). So for some C vC A, n ∈ E(C). There are two cases:

n ∈ MIN(C) or n ∈ CM . Either way, since M |= A, M |= C[n]. So M |= QT .
Suppose M ∗ |= ¬A(n). So for every C vC A, n 6∈ E(C) and so n 6∈ E(A). So for

some A vC D, n 6∈ DM , and thus M |= D[n]. Therefore M |= QT .
Suppose M ∗ |= R(n,m). So for some ρ vR R, (n,m) ∈ H (ρ). There are two

cases: (n,m) ∈ MIN(ρ) or (n,m) ∈ ρM . Either way, since M |= A, M |= ρ[n,m]. So
M |= QT .

Suppose M ∗ |= ¬R(n,m). So for every ρ vR R, (n,m) 6∈ H (ρ) and so (n,m) 6∈
H (R). Then (n,m) 6∈ RM ∩ (E(∃R)×E(∃R−)). There are three cases: (n,m) 6∈ RM ,
in which case for some R vR τ , M |= ¬τ [n,m], namely τ = R; or n 6∈ E(∃R) in
which case for some ∃R vC D, n 6∈ DM , and so M |= D[n]; orm 6∈ E(∃R−) in which
case for some ∃R− vC D, m 6∈ DM , and so M |= D[m]. In all cases, M |= QT . �

Finally we are ready to prove the main claim.

Main claim. T ∪ A |= Q iff A |= QT .

Proof. (⇐) Suppose A |= QT . Let M be any logical interpretation such that M |=
T ∪A. Since, M |= A and A |= QT , M |= QT . Since M |= T , M |= Q by Lemma 5.
Therefore, T ∪ A |= Q.

(⇒) Suppose A 6|= QT . Then, there is an M such that M |= A and M 6|= QT .
By Lemma 3, M ∗ |= T . By Lemma 4, M ∗ |= A. By Lemma 6, M ∗ 6|= Q. Therefore,
T ∪ A 6|= Q. �

Acknowledgments. This research has been partially supported by the EU IP project
n. FP7-318338 Optique (Scalable End-user Access to Big Data).



References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1995)
2. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in

RDFS and OWL. Morgan Kaufmann (2008)
3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-

scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. pp. 364–369 (2005)
5. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
6. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell.

168(1–2), 70–118 (2005)
7. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan Kaufmann

(2004)
8. Brickley, D., Guha, R., McBride, B.: RDF Schema 1.1. W3C Recommendation, World Wide

Web Consortium (Feb 2014), http://www.w3.org/TR/rdf-schema/
9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning
39(3), 385–429 (2007)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. Artif. Intell. 195, 335–360 (2013)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M.: Using
OWL in data integration. In: Semantic Web Information Management - A Model-Based Per-
spective, pp. 397–424. Springer (2009)

12. De Giacomo, G., Lespérance, Y., Levesque, H.J.: Efficient reasoning in proper knowledge
bases with unknown individuals. In: Proc. of IJCAI’11. pp. 827–832 (2011)

13. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept languages: From
subsumption to instance checking. J. of Logic and Computation 4(4), 423–452 (1994)

14. Franconi, E., Gutierrez, C., Mosca, A., Pirrò, G., Rosati, R.: The logic of extensional RDFS.
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