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Abstract. In this paper we tackle the problem of answering SPARQL queries
over virtually integrated databases. We assume that the entity resolution prob-
lem has already been solved and explicit information is available about which
records in the different databases refer to the same real world entity. Surprisingly,
to the best of our knowledge, there has been no attempt to extend the standard
Ontology-Based Data Access (OBDA) setting to take into account these DB links
for SPARQL query-answering and consistency checking. This is partly because
the OWL built-in owl:sameAs property, the most natural representation of links
between data sets, is not included in OWL 2 QL, the de facto ontology language for
OBDA. We formally treat several fundamental questions in this context: how links
over database identifiers can be represented in terms of owl:sameAs statements,
how to recover rewritability of SPARQL into SQL (lost because of owl:sameAs
statements), and how to check consistency. Moreover, we investigate how our solu-
tion can be made to scale up to large enterprise datasets. We have implemented the
approach, and carried out an extensive set of experiments showing its scalability.

1 Introduction

Since the mid 2000s, Ontology-Based Data Access (OBDA) [10,17,16] has become a
popular approach for virtual data integration [7]. In (virtual) OBDA, a conceptual layer
is given in the form of (the intensional part of) an ontology (usually in OWL 2 QL) that
defines a shared vocabulary, models the domain, hides the structure of the data sources,
and can enrich incomplete data with background knowledge. The ontology is connected
to the data sources through a declarative specification given in terms of mappings [5]
that relate symbols in the ontology (classes and properties) to (SQL) views over data.
The ontology and mappings together expose a virtual RDF graph, which can be queried
using SPARQL queries, that are then translated into SQL queries over the data sources.
In this setting, users no longer need an understanding of the data sources, the relation
between them, or the encoding of the data.

One aspect of OBDA for data integration is less well studied however, namely the fact
that in many cases, complementary information about the same entity is distributed over
several data sources, and this entity is represented using different identifiers. The first
important issue that comes up is that of entity resolution, which requires to understand
which records actually represent the same real world entity. We do not deal with this
problem here, and assume that this information is already available.

Traditional relational data integration techniques use extract, transform, load (ETL)
processes to address this problem [7]. These techniques usually choose a single represen-
tation of the entity, merge the information available in all data sources, and then answer
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queries on the merged data. However, this approach of physically merging the data is
not possible in many real world scenarios where one has no complete control over the
data sources, so that they cannot be modified, and where the data cannot be moved due
to freshness, privacy, or legal issues (see, e.g., Section 3).

An alternative that can be pursued in OBDA is to make use of mappings to virtually
merge the data, by consistently generating only one URI per real world entity. Unfortu-
nately, also this approach is not viable in general: 1. it does not scale well for several
datasets, since it requires a central authority for defining URI schemas, which may have
to be revised along with all mappings whenever a new source is added, and 2. it is crucial
for the efficiency of OBDA that URIs be generated from the primary keys of the data
sources, which will typically differ from source to source.

The approach we propose in this paper is based on the natural idea of representing
the links between database records resulting from entity resolution in the form of link-
ing tables, which are binary tables in dedicated data sources that simply maintain the
information about pairs of records representing the same entity. This bring about several
problems that need to be addressed: 1. links over database identifiers should be repre-
sented in terms of OWL owl:sameAs statements, which is the standard approach in
semantic technologies for connecting entity identifiers; 2. the presence of owl:sameAs
statements, which are inherently transitive, breaks rewritability of SPARQL queries into
SQL queries over the sources, and one needs to understand whether rewritability can
be recovered by imposing suitable restrictions on the linking mechanism; 3. a similar
problem arises for checking consistency of the data sources with respect to the ontology,
which is traditionally addressed through query answering; 4. since performance can
be prohibitively affected by the presence of owl:sameAs, it becomes one of the key
issues to address, so as to make the proposed approach scalable over large enterprise
datasets.

In this paper we tackle the above issues in the setting where we are given an
OWL 2 QL ontology that is mapped to a set of data sources, which are then extended
with linking tables. Specifically, we provide the following contributions:

– We propose a mapping-based framework that carefully virtually constructs
owl:sameAs statements from the linking tables, and deals with transitivity and
symmetry, in such a way that performance is not compromised.

– We define a suitable set of restrictions on the linking mechanisms that ensures
rewritability of SPARQL query answering, despite the presence of owl:sameAs
statements.

– We develop a sound and complete SPARQL query translation technique, and show
how to apply it also for consistency checking.

– We show how to optimize the translation so as to critically reduce the size of the
produced SQL query.

– To empirically demonstrate scalability of our solution, we carry out an extensive set
of experiments, both over a real enterprise cross-linked data set from the oil&gas
industry, and in a controlled environment; this demonstrates the feasibility of our
approach.

The structure of the paper is as follows: Sect. 2 briefly introduces the necessary
background needed to understand this paper, and Sect. 3 describes our enterprise sce-
nario. Sect. 4 provides a sound and complete SPARQL query translation technique
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for cross-linked datasets. Sect. 5 presents the main contribution of the paper, showing
how to construct an OBDA setting over cross-linked datasets, and Sect. 6 presents our
optimization technique. Sect. 7 presents an extensive experimental evaluation. Sect. 8
surveys related work, and Sect. 9 concludes the paper.

2 Preliminaries

Ontology Based Data Access In the traditional OBDA setting (T ,M, D), the three
main components are a set T of OWL 2 QL [14] axioms (called the TBox), a relational
database D, and a setM of mappings. The OWL 2 QL profile of OWL 2 guarantees that
queries formulated over T can be rewritten into SQL [2]. The mappings allow one to
define how classes and properties in T should be populated with objects constructed from
the data retrieved from D by means of SQL queries. Each mapping has one of the forms:

Class(subject)← sqlclass Property(subject,object)← sqlprop,
where sqlclass and sqlprop respectively are a unary and binary SQL query overD. For
both types of mappings we also use the equivalent notation (s p o)← sql. Subjects and
objects in RDF triples are resources (individuals or values) represented by URIs or literals.
They are generated using templates in the mappings. For example, the URI template for
the subject can take the form <http://www.statoil.com/{id}> where {id} is an
attribute in some DB table, and it generates the URI <http://www.statoil.com/25>
when {id} is instantiated as "25". FromM and D, one can derive a (virtual) RDF
graph GM,D, obtained by applying all mappings. Any RDF graph can be seen as a
set of logical assertions. Thus, the Tbox together with GM,D constitutes an ontology
O = (T , GM,D).

To handle ontology-based integration of cross-linked datasets, we extend here the
traditional OBDA setting with a fourth component AS containing a set of statements
of the form owl:sameAs (o1,o2). Thus, in this paper, an OBDA setting is a tuple
(T ,M, D,AS), and its corresponding ontology is the tuple O = (T , GM,D ∪ AS).
Unless stated differently, in the following we work with OBDA settings of this form.

Semantics: To interpret ontologies, we use the standard notions of first order in-
terpretation, model, and satisfaction. That is, O |= A(v) iff for every model I of O,
we have that I |= A(v). Intuitively, adding an ontology T on top of an RDF graph G,
extends G with extra triples inferred by T . Formally, the RDF graph (virtually) exposed
by the OBDA setting ((T ,M, D,AS) isG(T ,M,D,AS) = {A(v) | (T , GM,D∪AS) |=
A(v)}.

SPARQL SPARQL is a W3C standard language designed to query RDF graphs. Its
vocabulary contains four pairwise disjoint and countably infinite sets of symbols: I for
IRIs, B for blank nodes, L for RDF literals, and V for variables. The elements of T =
I∪B∪L are called RDF terms. A triple pattern is an element of (T∪V)×(I∪V)×(T∪V).
A basic graph pattern (BGP) is a finite set of triple patterns. Finally, a graph pattern, Q,
is an expression defined by the grammar
Q ::= BGP | FILTER(P, F ) | UNION(P1, P2) | JOIN(P1, P2) | OPT(P1, P2, F ),
where F , is a filter expression. More details can be found in [4].

A SPARQL query (Q,V ) is a graph pattern Q with a set of variables V which
specifies the answer variables—the set of variables in Q whose values we are interested
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in. The values to variables are given by solution mappings, which are partial maps
s : V→ T with (possibly empty) domain dom(s). Here, following [11,17], we use the
set-based semantics for SPARQL (rather than the bag-based one, as in the specification).

The SPARQL algebra operators are used to evaluate the different fragments of the
SPARQL query. Given an RDF graph G, the answer to a graph pattern Q over G is
the set JQKG of solution mappings defined by induction using the SPARQL algebra
operators and starting from the base case: triple patterns. Due to space limitation, and
since the entailment regime only modifies the SPARQL semantics for triple patterns, here
we only show the definition of for this basic case. We provide the complete definition in
our technical report [4].

For a triple pattern B, JBKG = {s : var(B) → T | s(B) ⊆ G} where s(B) is the
result of substituting each variable u in B by s(u). This semantics is known as simple
entailment. Given a set V of variables, the answer to (Q,V ) over G is the restriction
JQKG|V of the solution mappings in JQKG to the variables in V .

SPARQL Entailment Regime We present now the standard W3C semantics for
SPARQL queries over OWL 2 ontologies under different entailment regimes. We use
here the entailment regimes only to reason about individuals and, unlike [10], we do not
allow for variables in triple patterns ranging over class and property names. We leave the
problem of extending our results to handle also this case for future work, but we do not
expect this to present any major challenge.

We work with TBoxes expressed in the OWL 2 QL profile, which however may
contain also owl:sameAs statements. Therefore, we consider two Direct Semantics en-
tailment regimes for SPARQL queries, which differ in how they interpret owl:sameAs:
the DL entailment regime (which defines |=DL) interprets owl:sameAs internally,
implicitly adding to the ontology O the axioms to handle equality, i.e., transitivity, sym-
metry, and reflexivity. Instead, the QL entailment regime (which defines |=QL) interprets
owl:sameAs as a standard object property, hence does not assign to it any special
semantics.

Observe that a basic property of logical equality is that if a and b are equal, everything
that holds for a should hold also for b, and viceversa. In the context of SPARQL,
informally it means that given the answer JBKT ,G∪AS

to a triple pattern B, if the
answer contains the solution mapping s : v 7→ o and T |= owl:sameAs(o, o′), then
JBKT ,G∪AS

must also contain a solution mapping s′ that coincides with s but s′ : v 7→ o′.
Formally, the answer JBKRT ,G∪AS

to a BGP B over an ontology O under entailment
regime R is defined as follows:

JBKRO = {s : var(B)→ T | (O) |=R s(B)},
Starting from the JBKRO and applying the SPARQL operators in Q, we compute the set
JQKRO of solution mappings.

3 Use Case and Motivating Example

In this section we briefly describe the real-world scenario we have examined at Statoil,
and we illustrate the challenges it presents for OBDA with an example.

At Statoil, users access several databases on a daily basis, some of them are the
Exploration and Production Data Store (EPDS), the Norwegian Petroleum Directorate
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D1 D2 D3 D4

id1 Name

a1 ’A’

a2 ’B’

a3 ’H’

id2 Name Well

b1 null 1

b2 ’C’ 2

b6 ’B’ 3

id3 AName

c3 ’U1’

c4 ’U2’

c5 ’U6’

id4 LName

9 ’Z1’

8 ’Z2’

7 ’Z3’

Fig. 1. Wellbore datasets D1, D2, D3, and company dataset D4

(NPD) FactPages, and several OpenWorks databases. EPDS is a large Statoil-internal
legacy SQL (Oracle 10g) database comprising over 1500 tables (some of them with
up to 10 million tuples), 1600 views and 700 Gb of data. The NPD FactPages1 is a
dataset provided by the Norwegian government, and it contains information regarding
the petroleum activities on the Norwegian continental shelf. OpenWorks Databases
contain projects data produced by geoscientists at Statoil. The information in these
databases overlap, and often they refer to the same entities (companies, wells, licenses)
with different identifiers. In this use case the entity resolution problem has been solved
since the links between records are available.

The users at Statoil need to query (and get an answer in reasonable time) the infor-
mation about these objects without worrying about what is the particular identifier in
each database. Thus, we assume that the SPARQL queries provided by the users will not
contain owl:sameAs statements. The equality between identifiers should be handled
internally by the OBDA system. To illustrate this we provide the following simplified
example:

Example 1. Suppose we have the three datasets (from now on D1, D2, D3) with well-
bore2 information, and a dataset D4 with information about companies and licenses, as
illustrated in Figure 1. The wellbores in D1, D2, D3 are linked, but companies in D4

are not linked with the other datasets. These four datasources are integrated virtually by
topping them with an ontology. The ontology contains the concept Wellbore and the
properties hasName, hasAlternativeName and hasLicense.

The terms Wellbore and hasName are defined using D1 and D2. The property
hasAlternativeName is defined using D3. The property hasLicense is defined
over the isolated dataset D4. We assume that mappings for wellbores from Di use
URI templates urii. In addition, we know that the wellbores are cross-linked between
datasets as follows: wellbores a1, a2 in D1 are equal to b2, b1 in D2 and c3, c4 in D3,
respectively. In addition, a3 is equal to c5. These links are represented at the ontology
level by owl:sameAs statements of the form: owl:sameAs (uri1(a1),uri2(b2)),
owl:sameAs (uri2(b2),uri3(c3)), etc.

Consider now a user looking for all the wellbores and their names. According to
the SPARQL entailment regime, the system should return all the 12 combinations
of equivalent ids and names ((uri1(a1),A), (uri2(b2),A), (uri3(c3),A),
(uri1(a2),B), (uri2(b1),B), etc.) since all this tuples are entailed by the on-
tology and the data (c.f. Section 2). Note that no wellbores from D4 are returned. 2

1 http://factpages.npd.no/
2 A wellbore is a hole drilled for the purpose of exploration or extraction of natural resources.

http://factpages.npd.no/
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The first issue in the context of OBDA is how to translate the user query into a query
over the databases. Recall that owl:sameAs is not included in OWL QL, thus it is not
handled by the current query translation and optimization techniques. If we solve the
first issue by applying suitable constraints, we get into a second issue, how to minimize
the negative impact on the query execution time when reasoning over cross-linked
datasets.A third issue is how to check, for instance, whether hasName is a functional
property considering the linked entities. A fourth issue is how to handle the multiplicity
of equivalent answers required by the standard. For instance, in our example, in principle,
it could be enough to pick individuals with template uri1 as class representative, and
return only those triples. In the next sections we will tackle all these issues in turn.

4 Handling owl:sameAs by SPARQL query rewriting

In this section we present the theoretical foundations for query answer over ontology-
based integrated datasets. We also discuss how to perform consistency checking using
this approach. We assume for now that the links are given in the form of owl:sameAs
statements, and address later, in Section 5, the proper OBDA scenario, where links are
not given between URIs, but between database records. Recall that owl:sameAs is not
in the OWL 2 QL profile, and moreover, by adding the unrestricted use of owl:sameAs
we lose first order rewritability [1], since one can encode reachability in undirected
graphs. This implies that, if we allow for the unrestricted use of owl:sameAs, we
cannot offer a sound and complete translation of SPARQL queries into SQL.3

We present here an approach, based on partial materialization of inference, that in
principle allows us to exploit a relational engine for query answering in the presence of
owl:sameAs statements. This approach, however, is not feasible in practice, and we
will then show in Section 5 how to develop it into a practical solution. Our approach
is based on the simple observation that we can expand the set AS of owl:sameAs
facts into the set A∗S obtained from AS by closing it under reflexivity, symmetry, and
transitivity. Unlike other approaches based on (partial) materialization [9], we do not
expand here also data triples (specifically, those in GM,D), but instead rewrite the
input SPARQL query to guarantee completeness of query answering. We assume that
user queries in general will not contain owl:sameAs statements, and therefore, for
simplicity of presentation, here we do not consider the case where they are present as
input. However, our approach can be easily extended to deal also with owl:sameAs
statements in user queries. Given a SPARQL query (Q,V ) over (T , G ∪ AS), we
generate a new SPARQL query (ϕ(Q), V ) over (T , G ∪ A∗S) that returns the same
answers as (Q,V ) over (T , G∪AS). This approach is very similar to the singularisation
technique in [13]. The translation ϕ(·) is defined as follows.

Definition 1. Given a query (Q,V ), the query (ϕ(Q), V ) is obtained by replacing every
triple pattern t in Q with ϕ(t), where:4

3 Using the linear recursion mechanism of SQL-99, a translation would be possible, but with a
severe performance penalty for evaluating queries involving transitive closure.

4 Recall that terms of the form :x are blank nodes that, when occuring in a query, correspond to
existential variables.
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– ϕ({?v :P ?w}) = {?v owl:sameAs :a . :a :P :b .
:b owl:sameAs?w .}

– ϕ({?v rdf:type :C}) = {?v owl:sameAs :a . :a rdf:type :C .}

The following proposition states that answering SPARQL queries over a TBox T
under the DL entailment regime can be reduced to answering SPARQL queries under
the QL entailment regime (where owl:sameAs has no built-in semantics).

Proposition 1. Given OBDA setting (T ,M, D,AS) and a query (Q,V ), we have that
JQKDL

T ,GM,D∪AS
|V = Jϕ(Q)KQL

T ,GM,D∪A∗S
|V .

Consistency Check: Ontology languages, such as OWL 2 QL, allow for the specification
of constraints on the data. If the data exposed by the database through the mappings
does not satisfy these constraints, then we say that the ontology is inconsistent with
respect to the mappings and the data. OBDA allows one to check two types of con-
straints: (i) functionality of properties (although it cannot be expressed in OWL 2 QL),
which imposes that an individual is connected to at most one element; (ii) disjointness
of classes/properties, which cannot have (pairs of) individuals in common. In OBDA,
consistency checking can be reduced to query-answering [3]. This does not hold any-
more in general, when considering cross-linked datasets (where UNA does not hold).
For instance, suppose we want to check if the property :hasName in Example 1 is
functional. Clearly without considering equality between datasets the property is func-
tional, however, when we integrate the datasets, it is not anymore since we have in the
graph (url1(a1) :hasName ‘A’) and (url2(b2) :hasName ‘C’) and (url1(a1)
owl:sameAs url2(b2)). This implies that the wellbore url1(a1) has two names.
Using the translation above we can extend the results in [3] for checking violations
of class disjointness and of functionality of data and object properties, to account for
owl:sameAs statements. For disjointness and functionality of data properties this
is accomplished straightforwardly by the translation. Instead, for functionality of ob-
ject properties, we need to modify the query used in [3] and explicitly incorporate the
negation of owl:sameAs. For instance, to check if functionality of the object prop-
erty :isRelatedTo might be violated, we can check if the following query returns a
non-empty answer over (T , G ∪ A∗S):
SELECT ?x ?y1 ?y2 ?y3 WHERE {

?x :isRelatedTo ?y1 . ?x :isRelatedTo ?y2 .
FILTER(?y1 != ?y2 AND NOT EXISTS {?y1 owl:sameAs ?y2} ) }

If the answer is non-empty, the returned elements might witness the violation of func-
tionality. Notice that, because of the OWA if two elements are not known to be equal, in
general we cannot infer that they are not equal, and hence functionality might still hold
in some models. We refer to [4] for more details.

5 Handling Cross-Linked Datasets in Practice
We now deal with the proper case of querying cross-linked datasets, where
we are given: (a) an OWL 2 QL TBox, (b) a collection of datasets,
(c) a set of mappings, and (d) a set of linking tables5 stating equal-
ity between records in different datasets that represent the same entity.

5 Note that these tables could be available virtually, and hence retrieved through queries.
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Fig. 2. Linking tables for the wellbores category

For simplicity, we can think of each
dataset as corresponding to a different
data source, but datasets could be decou-
pled from the actual physical data sources.
In general, in different datasets, the same
identifiers might be used to denote differ-
ent objects, and the same objects might be
denoted by different identifiers. Moreover,
each dataset may contain data records
belonging to different pairwise disjoint
categories C1, . . . , Cm, for example well-
bores, or company names. A category cor-
responds to a set of records that can be mapped to individuals in the ontology belonging
to the same TBox class (different from owl:Thing), and that could, in principle, be joined.
For instance, cats and men belong to the same class mammal, but a cat can never be
joined with a man, hence cat and men constitute two different categories. We assume
that in addition to the datasets D1, . . . , Dn, for each category C there is a database DC

containing the linking tables for the records in C. Specifically, we denote a linking table
for datasets Di, Dj and category C with LC

ij(idi, idj). A tuple r1, r2 in LC
ij means that

the record r1 in Di represents the same object as the record r2 in Dj . Notice that, we do
not assume that there is a linking table for each pair of datasets Di, Dj for each category
C. The concepts above are illustrated in Figure 2. Our aim is to efficiently answer user
SPARQL queries in this setting.

The approach presented in the previous section is theoretical, and cannot be effec-
tively applied in practice because: (1) it assumes that the links are given in the form
of owl:sameAs statements whereas in practice, in an cross-linked setting, they will
be given as tables (with the results of the entity resolution process); and (2) it requires
pre-computing a large number of triples (namely A∗S) and materializing them into the
ontology. Since these triples are not stored in the database, they cannot be efficiently
retrieved using SQL. This negatively impacts the performance of query execution.

To tackle these problems, in this section we show how to: (a) expose, using mapping
assertions that are optimization-friendly, the information in the tables expressing equality
between DB records, as a set AS of owl:sameAs statements; (b) extend the mappings
so as to encode also transitivity and symmetry (but not reflexivity), and hence expose
the symmetric transitive closure A+

S of AS ; (c) modify the query-rewriting algorithm
(cf. Definition 1) so as to return sound and complete answers over the (virtual) ontology
extended with A+

S . We detail now the above steps.

(a) Generating AS: We now present a set of constraints on the structure of the linking
tables that are fully compatible with real-world requirements, and that allow us to process
queries efficiently, as we will show below:

1. All the information about which objects of category C are linked in datasets Di

and Dj is contained in LC
ij . Formally: If there are tables LC

ij , LC
ik and LC

kj , then LC
ij

contains all the tuples in πidi,idj
(LC

ik 1 LC
kj), when evaluated over DC .
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L1,2 L2,3 L1,3

id1 id2

a1 b2

a2 b1

id2 id3

b1 c4

b2 c3

id1 id3

a1 c3

a2 c4

a3 c5

Fig. 3. Linking Tables

2. Linking tables cannot state equality between different elements in the same dataset6.
Formally: There is no join of the form LC

ik 1 · · · 1 LC
ni such that (o, o′), with

o 6= o′, occurs in πLC
ik.idi,LC

ni.idi
(LC

ik 1 · · · 1 LC
ni), when evaluated over DC .

Example 2 (Categories). Consider Example 1. Here we consider only wellbores, there-
fore we have a single category Cwb with three linking tables LCwb

12 , LCwb
23 , and LCwb

13 as
shown in Figure 3. From the constraints above we know that πid1,id3

(LCwb
12 1 LCwb

23 ) is
contained in LCwb

13 , when both are evaluated over DCwb . 2

A key factor that affects performance of the overall OBDA system, is the form of the
mappings, which includes the structure of the URI templates used to generate the URIs.
Here, we discuss how the part of the mappings (including URI templates) that deal with
linking tables should be designed, so this approach scales up. The SPARQL-to-SQL
translation must add all the SQL queries defining owl:sameAs. However, as shown
in Section 6, we exploit our URI design to (intuitively) remove as many owl:sameAs
SQL definitions as possible before query execution.

We propose here to use a different URI template uriC,D for each pair constituted by
a category C and a dataset D.7 Observe that this design decision is quite natural, since
objects belonging to different categories should not join, even if in some dataset they are
identified in the same way. For example, wellbore n. 25 should not be confused with the
employee whose id is 25.

Next we generate the set of equalities AS extending the set of mappingsM, using a
different URI template for each tuple (category C,datasetD). More precisely, to generate
AS out of the categories C1 . . . Cn,M is extended with mappings as follows. For each
category C, and each linking table LC

ij we extendM with:

uriC,Di({idi}) owl:sameAs uriC,Dj ({idj})← select ∗ from LC
ij (1)

When the category C is clear from the context we write urii to denote uriC,Di

Example 3 (Mappings). To generate the owl:sameAs statements from the tables in
Example 2, we extend our set of mappingsM with the following mappings (fragment):

uri1({id1}) owl:sameAs uri2({id2}) ← SELECT * FROM LC
1,2

uri2({id2}) owl:sameAs uri3({id3}) ← SELECT * FROM LC
2,3

6 Observe that this amounts to making the Unique Name Assumption for the objects retrieved by
the mappings from one dataset

7 In the special case where there are several datasets that can be mapped to use common URIs,
there is no need for linking tables or any of the techniques presented in this paper. We address
the more general case, where this is not the case.
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Observe that this also implies that to populate the concept Wellbore with elements
from D1, the mappings inM will have to use the URI template: uri1. 2

Considering that the same URIs in different triples of the virtual RDF graph can be
generated from different mapping assertions, we observe that the form of the templates
in the mappings related to linking tables will affect also those in the remaining mapping
assertions in the OBDA system.
(b) Approximating A+

S : To be able to rewrite SPARQL queries into SQL without
adding A∗S as facts in the ontology, (relying only on the databases), we embed the
owl:sameAs axioms together with the axioms for symmetry and transitivity into the
mappings, that is, extending the notion of T -mappings [16] (T stands for terminology).
Intuitively, T -mappings embed the consequences from a OWL QL ontology into the
mappings. This allow us to drop the implicit axioms for symmetry, and transitivity from
the Tbox T .

For each category C and for each set of non-empty tables LC
i1,i2

LC
i2,i3

. . . LC
in−1,in

,
if LC

i1,in
does not exist, we include the following transitivity mappings inM:

t1({id1}) owl:sameAs tn({idn})← select ∗ from LC
i1,i2 1 · · · 1 LC

in−1,in (2)
and for each of the owl:sameAs mapping described in (1) and (2) we include the
following symmetry mappings inM:

tj({idj}) owl:sameAs ti({idi})← select ∗ from sqlij (3)
We call the resulting set of mappingsMS

(c) Rewriting the query Q: Encoding reflexivity would be extremely detrimental for
performance, not only by the large number of extra mappings we should consider but
also because it would render the optimizations explained in the next sections ineffective.
Intuitively, the reason for this is that while symmetry and transitivity affect only elements
which are linked to other datasets, reflexivity affects all the objects in the OBDA setting.
Thus, we would not be able to distinguish during the query transformation process,
which classes and properties actually deal with linked objects (and should be rewritten)
and which ones are not. Therefore, we modify the query-rewriting technique to keep
soundness and completeness with respect to the DL entailment regime while evaluating
the query under the QL entailment regime over (T ,MS , D).

We modify the query translation as follows:

Definition 2 ((ϕ(Q), V )). Given a query (Q,V ), the query (ϕ(Q), V ) is obtained by
replacing every triple pattern t in Q with ϕ(t), where: ϕ({?v :P ?w}) is shown in
Fig. 4 (A) and ϕ({?v rdf:type :C}) is shown in Fig. 4 (B).

Intuitively, following up our running example, the first BGP in Fig. 4 (A) gets all
triples such as (uri1(a1), :hasName, A) that do not need equality reasoning. The
second BGP, will get triples such as (uri1(a1), :hasName, C), that require
owl:sameAs(uri1(a1), uri2(b2)). The two last BGPs are used only for object
properties, and it tackles the cases where equality reasoning is needed for the object (?w).

Recall that we do not allow owl:sameAs in the user query language. Therefore
the user will not be able to query ?x owl:sameAs?x. In principle, we could also move
transitivity and symmetry to the query, but it will not reduce the SQL query rewriting.

Theorem 1. Given OBDA setting (T ,AS ,M,D) and a query (Q,V ), we have that
JQKDL

T ,GM,D∪AS
|V = Jϕ(Q)KQL

T ,GMS,D
|V .
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{ ?v :P ?w . } UNION {
?v owl:sameAs _:z1 . _z1 :P ?w .
} UNION {
?v :P _:z2 . _:z2 owl:sameAs ?w .
} UNION {
?v owl:sameAs _:a .
_:b owl:sameAs ?w . _:a :P _:b . }

(A)

?v rdf:type :C . UNION {
?v owl:sameAs [ rdf:type :C ] .
}

(B)

Fig. 4. SPARQL translation to handle owl:sameAs without Reflexivity

6 Optimization

The technique presented in Section 5 can cause excessive overhead on the query size
and therefore on the query execution time, since it has to extend every triple pattern with
owl:sameAs statements. In this section we show how to remove the owl:sameAs
statements that do not contribute to the answer. For instance, in our running example
the property hasLicense is defined over the companies in D4, which are not linked
with the other 3 databases. Thus, the owl:sameAs statements should not contribute to
“populate” this property.

To translate SPARQL to SQL, in the literature [17] and in the implementation, we
encode the SPARQL algebra tree as a logic program. Intuitively, each SPARQL operator
is represented by a rule in the program as illustrated in Example 4. The translation
algorithm employs a well-known process in Logic Programming called partial evalua-
tion [12]. Intuitively, the partial evaluation of a SPARQL query Q (represented as a logic
program) is another query Q′, that represents the partial execution of Q. This process
iterates over the structure of the query and specializes the query going from the highly
abstract query to the concrete SQL query over the database. It starts by replacing the
atoms that correspond to leaves in the algebra tree (triple patterns) with the union of all
its definitions in the mappings, and then it iterates over remaining atoms trying to replace
the atoms by their definitions. This procedure is done without executing any SQL query
over the databases.

We detect and remove owl:sameAs statements that do not contribute to the answer
using this procedure. It is critical to notice that this optimization can be performed
because we intentionally added two constraints: (i) we disallow mappings modeling
reflexivity; and (ii) we force unique URIs for each pair of category/database. We illustrate
this optimization in the following example.

Example 4 (Companies). Consider the query asking for the list of companies and li-
censes shown in Figure 5 (A). This query is translated into the query (fragment) shown in
Figure 5 (B). Since we know that only wellbore are linked through the different datasets,
it is clear that there is no need for owl:sameAs statements (nor unions) in this query.
In the following, we show how the system partially evaluates the query to remove such
pointless union. This translated query is represented as the following program encoding
the SPARQL algebra tree:

(1)answer(v,w)← union(v,w)
(2) union(v,w)← bgp1(v, w)
(3) bgp1(v, w) ← hasLicense(v,w)
(4) union(v,w)← bgp2(v, w)
(5) bgp2(v, w) ← owl:sameAs(v,x), hasLicense(x,w)
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Select * WHERE {
?v :hasLicense ?w .
}

(A)

Select * WHERE {
{?v :hasLicense ?w .} UNION {
?v owl:sameAs [ :hasLicense :w ] . } }

(B)

Fig. 5. Optimizable Queries

The next step is to replace the leaves of the SPARQL tree (the triple patterns
owl:sameAs and hasLicense ) with their definitions (fragment without including
transitivity and symmetry):

(6) hasLicense(uri4(v),uri4(w))← sql(v,w)
(7) owl:sameAs(uri1(v),uri2(x)) ← T12(v,w)
(8) owl:sameAs(uri2(v),uri3(x)) ← T23(v,w)
(9) owl:sameAs(uri1(v),uri3(x)) ← T13(v,w)

Thus, the system try to replace hasLicense(x,w) in (5) by its definition in (6), and
analogously with owl:sameAs (5 by the union of 7-9) Using partial evaluation, the
system will try to unify the head of (6) with hasLicense in (5). The result is:

(5')bgp2(v, uri4(w)) → owl:sameAs(v,uri4(x)), sql(uri4(x),uri4(w))

In the next step, the algorithm will try to unify the owl:sameAs in (5′) with the head
of at least one of the rules (7), (8), (9) (if all matched, it would add the union of the tree).
Given that the URI template (represented as a function) uri4 does not occur in any of
the rules, the whole branch will be removed. The resulting program is:

(1)answer(v,w)→ union(v,w)
(2) union(v,w)→ bgp1(v, w)
(4) bgp1(v, w) → hasLicense(v,w)
(5) hasLicense(uri4(v),uri4(w))→ sql(v,w)

This query without owl:sameAs overhead is now ready to be translated into SQL. 2

This process will also take care of eliminating unnecessary SQL queries used to
define owl:sameAs. For instance, if the user queries for wellbores, it will remove all
the SQL queries used for linking company names. This is why we require a unique URI
for each pair category/dataset.

7 Experiments

In this section we present a sets of experiments evaluating the performance of queries
over crossed-linked datasets. We integrated EPDS and the NPD fact pages at Statoil
extending the existing ontology and the set of mappings, and creating the linking tables.
We ran 22 queries covering real information needs of end-users over this integrated
OBDA setting. Since EPDS is a production server with confidential data, and its loads
changes constantly, and in addition the OBDA setting is too complex to isolate different
features of this approach, we also created a controlled OBDA environment in our own
server to perform a careful study our technique. In addition, we exported the triples of
this controlled environment and load them into the commercial triple store Stardog8

(v3.0.1).

8 http://stardog.com

http://stardog.com
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To perform the controlled experiments, we setup an OBDA cross-linked environment
based on the Wisconsin Benchmark [6].9 The Wisconsin benchmark was designed
for the systematic evaluation of database performance with respect to different query
characteristics. It comes with a schema that is designed so one can quickly understand
the structure of each table and the distribution of each attribute value. This allows easy
construction of queries that isolate the features that need to be tested. The schema can be
used to instantiate multiple tables. These tables, which we now call “Wisconsin tables”,
contain 16 attributes, and a primary key.

Observe that Ontop does not perform SQL federation, therefore it usually relies on
systems such as Teiid 10 or EXAREME [19] (a.k.a. ADP) to integrate multiple databases.
These systems expose to Ontop a set of tables coming from the different databases. Thus,
to mimic this scenario we created a single database with 10 tables: 4 Wisconsin tables,
representing different datasets, and 6 linking tables. Each Wisconsin table contains 100M
rows, the 6 tables occupied ca. 100GB of disk space, exposing +1.8B triples.

The following experiments evaluate the overhead of equality reasoning when an-
swering SPARQL queries. The variables we considered are: (i) Number of SPARQL
joins (1-4); (ii) Number and type of properties (0-4 /data-object); (iii) Number of linked
datasets (2-3); (iv) Selectivity of the query (0.001%, 0.01%, 0.1%); (v) Number of equal
objects between datasets (10%,30%,60%). In total we ran 1332 queries. The SPARQL
queries have the following template:
SELECT * WHERE {
?x rdf:type :Classi . // i =1..4
?x :DataPropertyj−1 ?y1 . ?x :DataPropertyj ?y2 . // j =0..4
?x :ObjectPropertyk−1 ?z1 . ?x :ObjectPropertyk ?z2 . // k =0..4
Filter( ?y < k% ) }

where a 0 or negative subindex means that the property is not present in the query.
When we evaluated 2 datasets we included equalities between elements of the classes A1

and A2. When we evaluated 3 datasets the equality was between A1, A2 and A4. The
class A3 and the properties S3 and R3 are isolated. We group the queries in 9 groups:
(G1) No properties (c), (G2) 1 d. prop. 0 obj. prop. (1d), (G3) 0 d. prop. 1 obj. prop.
(1o),. . . , (G9)2 d. prop. 2 obj. prop. (2d2o).

The average start-up time is ≈5 seconds. Observe that SPARQL engines based on
materialization can take hours to start-up with OWL-DL ontologies [10]. The results are
summarized in Figure 6. We show the worst execution time in each group including the
time that it takes to fetch the results.

Discussion: The results confirm that reasoning over OBDA-based integrated data
has a high cost, but this cost is not prohibitive. The execution times at Statoil range from
3.2 seconds to 12.8 minutes, with mean 53 secs, and median 8.6 secs. An overview of
the execution times are shown in Fig. 7. The most complex query had 15 triple patterns,
using object and data properties coming from both data sources.

In the controlled environment, in the 2 linked-datasets scenario, with 120M equal
objects (60%), even in the worst case most of the queries run in ≈ 5min. The query
that performs the worst in this setting, (4 joins, 2 data properties, 2 object properties,

9 All the material to reproduce the experiments can be found online: https://github.com/
ontop/ontop-examples/tree/master/iswc-crosslinked

10 http://teiid.jboss.org

https://github.com/ontop/ontop-examples/tree/master/iswc-crosslinked
https://github.com/ontop/ontop-examples/tree/master/iswc-crosslinked
http://teiid.jboss.org
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Fig. 7. Overview of query execution times for tests on EPDS at Statoil.

105 selectivity) returns 480.000 results, and takes ≈ 13min. When we move to the 3
linked-datasets scenario, most executions (again worst time in every group) take around
than 15min. In this case, the worst query in G9 takes around 1.5hs and returns 1.620.000
results. One can see that the number of linked datasets is the variable that impacts the
most on the query performance. The second variable is the number of object properties
since its translation is more complex than the one for data properties. The third variable,
is the selectivity. It is worth noticing that these results measure an almost pathological
case taking the system to its very limit. In practice, it is unlikely that 60% of the all
the objects of a 300M integrated dataset will be equal and belong to the same category.
Recall that if they are not in the same category, the optimization presented in Section 6
removes the unnecessary SQL subqueries. For instance, in the integration of EPDS and
NPD there are less than 10.000 equal wellbores and there are millions of objects of
different categories. Moreover, even 1.5hs is a reasonable time. Recall that Statoil users
required weeks to get an answer for this sort of queries.

Because of the partial evaluation-based optimizations proposed in Section 6, with 2
datasets 30 out of 48 queries (52 out of 100 with 3 datasets) get optimized and executed
in a few milliseconds. These queries are the ones that join elements in A1,2,4 (3 datasets)
with A3, S3 and R3 elements. Since there is no equality between these elements, neither
through owl:sameAs, nor with standard equality, the SPARQL translation produces
an empty SQL, and no SQL query gets executed returning automatically 0 answers.

To load the data into Stardog we used Ontop to materialize the triples. The material-
ization took 11hs, and it took another 4hs to load the triples into Stardog. The default
semantics that Stardog gives to owl:sameAs is not compliant with the official OWL
semantics since “Stardog designates one canonical individual for each owl:sameAs
equivalence set”; however, one can force Stardog to consider all the URIs in the equiva-
lence set. Our experiments show that Stardog does not behave according to the claimed
semantics. Details can be found in [4].
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8 Related Work

The treatment of owl:sameAs in reasoning and query evaluation has received consid-
erable interest in recent years. After all, many data sources in the Linked Opend Data
(LOD) cloud give owl:sameAs links to equivalent URIs, so it would be desirable to
use them. Surprisingly, to the best of our knowledge, there has been no attempt to extend
OBDA to take into account owl:sameAs. Next we discuss several approaches that
handle owl:sameAs trough rewriting.

Balloon Fusion [18] is a line of work that attempts to make use of owl:sameAs
information in the LOD cloud for query answering. The approach is similar to ours in that
it is based on rewriting a query to take into account equality inferences, before executing
it. The treatment of owl:sameAs is semantically very incomplete however, since the
rewriting only applies to URIs stated explicitly in the query. No equality reasoning is
applied to the variables in the query, which is a main point of our work.

The question of equality handling becomes quite different in nature in the context of
a single data store that is already in triple format. Equality can then be handled essentially
by rewriting equal URIs to one common representative. E.g. [15] report on doing this for
an in-memory triple store, while simultaneously saturating the data with respect to a set
of forward chaining inference rules. Observe that in many scenarios (such as the Statoil
scenario discussed here) this approach is not possible, both due to the fact that the data
should be moved from the original source, and because of the amount of data that should
be loaded into memory. In a query rewriting, OBDA setting, this corresponds to the idea
of making sure that mappings will map equivalent entities from several sources to the
same URI – which is often not practical or even impossible.

Our approach is only valid when the links between records really mean semantic
identity. When the links are uncertain, query answering then requires the use of proba-
bilistic database methods, as discussed e.g. in [8] for a limited type of queries. Extending
these methods to handle arbitrary SPARQL-style queries is not trivial.

9 Conclusions

In this paper we showed how to represent links over database as owl:sameAs state-
ments, we propose a mapping-based framework that carefully constructs owl:sameAs
statements to minimize the performance impact of equality reasoning. To recover
rewritability of SPARQL into SQL we imposed a suitable set of restrictions on the
linking mechanisms that are fully compatible with real world requirements, and together
with the owl:sameAs-mappings make it possible to do the SPARQL-to-SQL trans-
lation. We showed how to answer SPARQL queries over crossed linked datasets using
query transformation. and how to optimize the translation to improve the performance of
the produced SQL query. To empirically support this claim, we provided an extensive
set of experiments over real enterprise data, and also in a controlled environment.
Acknowledgement. This paper is supported by the EU under the large-scale integrating
project (IP) Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-
318338.
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