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Abstract. Entity navigation over Linked Data often follows semantic
links by using Linked Data browsers. With the increasing volume of
Linked Data, the rich and diverse links make it difficult for users to
traverse the link graph and find target entities. Besides, there is a neces-
sity for navigation paradigm to take into account not only single-entity-
oriented transition, but also entity-set-oriented transition. To facilitate
entity navigation, we propose a novel concept called link pattern, and
introduce link pattern lattice to organize semantic links when browsing
an entity or a set of entities. Furthermore, to help users quickly find tar-
get entities, top-K link patterns are selected for entity navigation. The
proposed approach is implemented in a prototype system and then com-
pared with two Linked Data browsers via a user study. Experimental
results show that our approach is effective.

Keywords: Entity Navigation, Link Pattern, Formal Concept Analysis,
Link Pattern Selection

1 Introduction

With the advent of Linked Data, its navigational feature has been largely rec-
ognized during its use in practice. Just as traditional Web browsers allow users
to navigate between HTML pages by following hypertext links, Linked Data
browsers [1,10,11,9,15,8] allow users to navigate between entities by following
semantic links. However, with the enrichment of available Linked Data on the
Web, challenges in navigating the data space arise: large numbers of linked enti-
ties and high diversity of links among entities. For example, Steven Spielberg

in DBpedia [2] is linked to 117 entities (e.g., Cincinnati, Los Angeles) through
51 semantic links (e.g., birthPlace, residence). Relying solely on link traver-
sal, users would have to browse and choose among a potentially long list of
semantic links, and synthesize information by themselves. This procedure is of-
ten time-consuming and error-prone.

Besides, there is a necessity for navigation paradigm to take into account
not only single-entity-oriented transition, but also entity-set-oriented transition.
Existing solutions allow users to navigate over Linked Data through common
links [10,11]. Yet, there are many potential relationships between the current
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entity (entities) and its (their) related entities. As shown in Figure 1, Steven
Spielberg is the producer and also the director of A.I.. As shown in Figure 2,
Tom Cruise starred in 2 films directed by Steven Spielberg. Moreover, there
is a hierarchical relationship among semantic links (e.g., both residence and
birthplace are subproperties of location). These rich structural features could
be leveraged to improve entity navigation.

In order to mitigate the effect of these problems and improve the efficiency of
navigation, we propose a novel approach that facilitates link traversal and assists
users’ navigation. In our approach, a link pattern lattice is constructed to orga-
nize semantic links based on Formal Concept Analysis (FCA) [7], a methodology
of data analysis and knowledge representation. Here, link pattern represents the
rich semantic relationships between the current entity (entities) and its (their)
related entities (e.g., “starred at least k films”, “direct and also produce”). Fur-
ther, there could be an inclusion relationship between link patterns. The link
pattern lattice provides a visual navigation method to explore the information
space [5,6]. However, users’ direct interaction with the complex lattice could
cause the problem of disorientation and cognitive overhead. To lighten users’
navigational burden, we give a method to select top–K link patterns for entity
navigation based on the Budgeted Maximum Coverage (BMC) model [12]. The
contribution of this paper is summarized as follows.

– We present a novel way to organize semantic links. We propose a new notion
of link pattern and give a way to construct the link pattern lattice in the
context of entity browsing.

– We introduce a measure of the “goodness” of link pattern, and give a method
to select top–K link patterns based on the Budgeted Maximum Coverage
(BMC) model.

– We implement the proposed approach in a prototype system and compare it
with two Linked Data browsers by conducting a user study. The experimental
results demonstrate the effectiveness of our approach.

The remainder of this paper is structured as follows. Section 2 discusses related
work. Section 3 introduces the notion of link pattern and a way to construct
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the link pattern lattice in the context of browsing entities. Section 4 describes
an optimization method for link pattern selection. Our evaluation is reported in
Section 5. Section 6 concludes this paper.

2 Related Work

Navigation as an important feature of Linked Data, has been supported by many
Linked Data browsers. Tabulator [1] allows users to browse data by starting from
a single resource and following links to other resources. It also allows users to
select a resource for further exploration in a nest tree view. gFacet [10] is a tool
that supports the exploration of the Web of data by combining graph-based
visualization with faceted filtering functionalities. With gFacet it is possible to
choose one class and then pivot to a related class keeping those filters for the
instances of the second class connected to the filtered instances in the first class.
OpenLink Faceted Search & Find Service1, offers several paths of DBpedia data
exploration, starting from Keyword, URI or Label. It represents metadata by
an entity-attribute-value view. It also provides a facet filter view by selecting
different attributes. Parallax [11] is one of the first browsers to offer pivoting
(or set-oriented browsing) but it is originally tied to Freebase. It shows the
set of resources, accompanied by a list of facets for filtering. It also provides
a list of connections, showing those properties that can be used in a pivoting
operation. VisiNav [9] is a system based on an interaction model designed to
easily search and navigate large amounts of Web data. It provides four atomic
operations over object structured datasets: keyword search, object focus, path
traversal, and facet specification. Users incrementally assemble complex queries
that yield sets of objects. Rhizomer [8] addresses the exploration of semantic
data by applying the data analysis mantra of overview, zoom and filter. Users
can interactively explore the data using facets. Moreover, facets also feature a
pivoting operation. Visor [15] is a generic RDF data explorer that can work over
SPARQL endpoints. In Visor, exploration starts by selecting a class of inter-
est from the ontology. Then, users can pivot to related collections and continue
browsing. Visor provides a hierarchical overview of the collections and also pro-
vides a spreadsheet requiring manual customization to filter the collection.

Whereas the above efforts mainly focus on providing the user with powerful
interaction modes, we aim to appropriately organize and select links, which is
complementary to all of them.

3 Link Pattern Lattice Construction

This section introduces link pattern lattice for organizing semantic links based
on Formal Concept Analysis (FCA) [7]. First, we formally define the notion of
link pattern in Section 3.1 and introduce FCA in Section 3.2. Then we construct
link pattern lattice in our context in Section 3.3.

1 http://dbpedia.org/fct/
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3.1 Link Pattern

Let U be a set of URI named entities and L be a set of links including object
properties, property chains and inverse of them. In the implementation of this
study, we only consider those links that directly connect entities or indirectly con-
nect entities through blank nodes. A link graph T ⊆ U×L×U is a set of triples.
There is a partial ordering ≼ on L, which is deduced from rdfs:subPropertyOf

relationship.

Definition 1 (Link Pattern with Minimum Number Restriction) Let T
be a link graph, k be a positive integer, l ∈ L. A link pattern of l with minimum
k restriction, denoted by LP((min k), l), is a function from 2U to 2U such that

LP((min k), l)(S) = {v ∈ U ||{u ∈ S|(u, l, v) ∈ T}| ≥ k} for S ⊆ U .

The link pattern LP ((min k), l) is proposed to express the degree of connection
between current entities and target entities. For simplicity, we use (min k)l to
denote LP ((min k), l). Note that (min 1)l represents the same meaning as the
traditional link l. We abbreviate (min 1)l to l.

In Figure 1, E1 = {Steven Spielberg}. director−1(E1) ⊇ {A.I., Jurassic
Park}.2 producer−1(E1) ⊇ {A.I., Eagle Eye}. In Figure 2, E2 = {War of the

Worlds, Taken, A.I., Minority Report, Schindler’s List}, S={War of the

Worlds, Taken, A.I.}⊆ E2, narrator(S)={Dakota Fanning, Ben Kingsley,
Morgan Freeman}. ((min 2)starring)(S) = {Dakota Fanning}, which repre-
sents that Dakota Fanning starred at least 2 films in S.

Definition 2 (Conjunctive Link Pattern) Given two link patterns LP1 and
LP2, the conjunctive link pattern of LP1 and LP2, denoted by LP1 ∧ LP2, is a
function from 2U to 2U such that

(LP1 ∧ LP2)(S) = LP1(S) ∩ LP2(S) for S ⊆ U .

In Figure 1, (director−1 ∧ producer−1)(E1) ⊇ {A.I.}, which represents that
Steven Spielberg is the producer and also the director of A.I.. In Figure 2,
(narrator ∧((min 2)starring))(S)={Dakota Fanning}, which represents Dakota
Fanning narrated at least 1 film and also starred at least 2 films in S.

In this paper, a link pattern can be a link pattern with minimum number
restriction or a conjunctive link pattern. Besides, link patterns with minimum
number restriction can be called atomic link patterns.

Definition 3 (Sub-pattern Relationship) Given two link patterns LP1 and
LP2, LP1 is called a sub-pattern of LP2, denoted by LP1 ⊆ LP2, if LP1(S) ⊆
LP2(S) holds for every subset S of U .

We have the following proposition, the proof of which can be easily obtained from
the definition of sub-pattern and the inference rule for rdfs:subPropertyOf.

Proposition 1 Let l, l1, l2 ∈ L, k, k1, k2 ∈ Z+, and then we have

1. if k1 ≤ k2, then (min k2)l ⊆ (min k1)l.
2. if l1 ≼ l2, then (min k)l1 ⊆ (min k)l2.

2 We use l−1 to denote the inverse of link l.
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3.2 Formal Concept Analysis

In FCA [7], there are three main concepts: formal context, formal concept and
concept lattice.

Definition 4 (Formal Context K ) A formal context is a triple K=(G, M,
I), where G denotes a set of objects, M a set of attributes, and I ⊆ G × M
a binary relation between G and M. The statement (g,m) ∈ I is interpreted
as “the object g has attribute m”. The two derivation operators (·)′ define a
Galois connection between the powersets (2G,⊆) and (2M ,⊆): A

′
= {m ∈ M |

∀ g ∈ A : (g,m) ∈ I} for A ⊆ G, and B
′
= {g ∈ G | ∀ m ∈ B : (g,m) ∈ I} for

B ⊆ M .

Definition 5 (Formal Concept c) Given a formal context K=(G, M, I) and
A ⊆ G, B ⊆ M , a pair c= (A, B) satisfying A

′
= B and B

′
= A, is called a

formal concept of K. A and B are called the extent and intent of c, respectively.
A partial ordering ≼ over the concepts C of K can be defined as follows: (A1,

B1) ≼ (A2, B2) ⇐⇒ A1 ⊆ A2 (⇐⇒ B2 ⊆ B1).
For two concepts c1 and c2, if c1 ≼ c2 and there is no concept c3 with c3

̸= c1, c3 ̸= c2, c1 ≼ c3 ≼ c2, then c1 is called a child of c2, and c2 is called a
parent of c1. This relationship is denoted by c1 ≺ c2.

Definition 6 (Concept Lattice L) With respect to a formal context K and
the partial order ≺, the concepts in C constitute a lattice, called the concept
lattice of K.

3.3 Link Pattern Lattice Construction Using FCA

FCA is a mathematically well founded classification framework allowing to derive
implicit relationships from a set of objects and their attributes. We construct
link pattern lattice by using FCA. The construction process includes two steps:
constructing a formal context K and generating a link pattern lattice of K.

Firstly, given a link graph T ⊆ U × L× U and a set of entities S ⊆ U being
the focus, we consider the set of links L′ = {l ∈ L|∃u ∈ S, ∃v ∈ U, (u, l, v) ∈ T}.
A formal context K = (G,M, I) in FCA can be defined as follows: G = {v ∈
U |∃u ∈ S, ∃l ∈ L, (u, l, v) ∈ T} denotes the set of linked entities. M is a subset of
atomic link patterns, i.e., the attributes inM take the form (min k)l. I ⊆ G×M ,
(v, (min k)l) ∈ I iff v ∈ ((min k)l)(S), which means there are at least k entities
in S having link l to v. The algorithm for constructing a formal context K is in
Algorithm 1. Line 3 generates G and line 8-14 generate M and I.

Secondly, we choose a well-known lattice generation algorithm called Bor-
dat [3], which produces both the concepts and the concept lattice. The worst-
case running time of Bordat is O(|G||M |2|N |), where |N | is the number of link
patterns in the resulting lattice. We will show the running time on real-life data
in our experiments.

With the following examples, we illustrate how to use FCA to construct
link pattern lattice in two cases: single-entity-oriented and entity-set-oriented
transitions.
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Algorithm 1: Construct Formal Context

Input: T : a link graph; S: a set of entities
Output: K: a formal context

1 Initialize a formal context K = (G,M, I), G← ∅, M ← ∅, I ← ∅;
2 L′ ← {l ∈ L|∃u ∈ S,∃v ∈ U, (u, l, v) ∈ T};
3 G← {v ∈ U |∃u ∈ S, ∃l ∈ L, (u, l, v) ∈ T};
4 foreach l ∈ L′ do
5 Find each sup-link lsup of l;
6 if lsup ̸∈ L′ then
7 L′ ← L′ ∪ {lsup} , T ← T ∪ {(u, lsup, v)|∃u ∈ S,∃v ∈ U, (u, l, v) ∈ T};

8 foreach l ∈ L′ do
9 foreach v ∈ G do

10 k = |{u ∈ S|(u, l, v) ∈ T}|;
11 if k > 0 then
12 for i← 1 to k do
13 M ←M ∪ {(min i)l};
14 I ← I ∪ {(v, (min i)l)}.

15 return K;

Single-Entity-Oriented. Suppose a user is viewing the RDF description of
Steven Spielberg, as shown in Figure 1. In this case E1 = {Steven Spielberg}
be the focus, the linked entity set G = {A.I., Jurassic Park, Eagle Eye,
Cincinnati, Los Angeles}, and the semantic links L′ = {director−1, producer−1,
birthP lace, residence}. Moreover, there is a subLinkOf hierarchy among these
links in Figure 3. The link participator−1 and location are added to L′.

For each link l ∈ L′, we obtain the link patterns of l with minimum k re-
striction. k is equal to 1 in the single-entity-oriented transition. The atomic link
patterns M = {director−1, producer−1, participator−1, birthP lace, residence,
location}. The formal context K is shown in Table 1.

We have {director−1, producer−1, participator−1}′
= {A.I.} and {A.I.}′

=
{director−1, producer−1, participator−1}. {A.I.} and {director−1, producer−1,
participator−1} satisfy a Galois connection. According to Definition 5, ({A.I.},
{director−1, producer−1, participator−1}) is a formal concept emerging from Ta-
ble 1. Its intent {director−1, producer−1, participator−1} represents a conjunc-
tive link pattern.

Figure 4 shows the link pattern lattice associated with Table 1. In the dia-
gram, each node denotes a link pattern while edges reflect the partial ordering
≺ between link patterns.

Entity-Set-Oriented. Suppose the user explores the films directed by Steven

Spielberg by following a director link, as shown in Figure 2. In this case E2

= {War of the Worlds, Taken, A.I., Minority Report, Schindler’s List}
be the focus, the semantic links L′ = {starring, narrator} and the linked en-
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Table 1: An example of formal context
director−1 producer−1 participator−1 birthP lace residence location

A.I. × × ×
Jurassic Park × ×
Eagle Eye × ×
Cincinnati × ×
Los Angeles × ×

producer

participator location

director bithPlace residence

topObjectProperty

Fig. 3: An example of link hierarchy

p1: director -1

p2: producer -1

p3: participator -1

p4: birthPlace

p5: residence

p6: location

e1: A. I.

e2: Jurassic Park

e3: Eagle Eye

e4: Cincinnati

e5: Los Angeles

({e1, e2, e3, e4, e5}, { })

({e1},

{p1, p2, p3})

({e1, e2},

{p1, p3})

({e1, e3},

{p2, p3})

({e1, e2, e3},

{p3}) ({e4, e5},

{p6})

({e4},

{p4, p6})

({e5},

{p5, p6})

({ }, {p1, p2, p3, p4, p5})

Fig. 4: Link pattern lattice associated
with Table 1.

tity set G = {Tom Cruise, Dakota Fanning, Ben Kingsley, Morgan Freeman}.
Note that the atomic link patterns M = {starring, (min 2)starring, narrator}.
The formal context K is shown in Table 2.

({Dakota Fanning, Ben Kingsley}, {starring, narrator}) is a formal con-
cept emerging from Table 2. Its intent {starring, narrator} represents a con-
junctive link pattern. Besides, ({Dakota Fanning}, {starring, (min 2)starring,
narrator}) is another concept of this context. Furthermore, we have ({Dakota
Fanning}, {starring, (min 2)starring, narrator}) ≺ ({Dakota Fanning, Ben
Kingsley}, {starring, narrator}). The link pattern lattice for Table 2 is shown
in Figure 5.

4 Link Pattern Selection

A link pattern lattice provides a multi-granular, progressive navigation assis-
tance. In some cases, the lattice may have a complex structure so that users feel
disoriented and require several interactions to arrive at target entities.

For lightening users’ burden, we give a method to select top–K link patterns
from lattice to enable users to find target entities more quickly. Firstly, we in-
troduce three metrics to measure the “goodness” of link patterns in Section 4.1.
Then we select top–K link patterns that are as “good” as possible while being
able to retrieve as many linked entities as possible in Section 4.2.
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Table 2: An example of formal con-
text

starring (min2)starring narrator

Cruise × ×
Fanning × × ×
Kingsley × ×
Freeman ×

p1: starring

p2:(min2)starring

p3: narrator

e1: Cruise

e2: Fanning

e3: Kingsley

e4: Freeman

({e1, e2, e3, e4}, { })

({e1, e2},

{p1, p2})

({e1, e2, e3},

{p1})

({e2, e3, e4},

{p3})

({e2, e3},

{p1, p3})

({e2}, {p1, p2, p3})

Fig. 5: Link pattern lattice for Ta-
ble 2.

4.1 Metrics of Link Pattern

Given a link pattern lattice LPL of a formal context K = (G, M, I) and a
link pattern c, the “goodness” of link pattern c can be defined from various
perspectives. In this paper, we prefer to provide informative (measured by infor-
mativeness), understandable (measured by conciseness) and specific (measured
by specificness) link patterns.

Informativeness. As to link patterns, the idea is that a link pattern having few-
er reachable linked entities is more informative. We compute the self-information
of the link pattern c using information theory [13],

info(c) = − log pr(c),

pr(c) =
|ext(c)|
|G|

.
(1)

ext(c) is the extent of c. G is the set of linked entities inK. Further, we normalize
info(c) into the range [0, 1] as the informativeness of link pattern c:

infoK(c) =
info(c)

log |G|
. (2)

Conciseness. In practice, we use the label of the intent of link pattern c as a
“road sign” in users’ navigation (e.g., director−1∧producer−1∧participator−1).
The longer the lengths of intents become, involving many links at various levels
of generality, the harder it becomes to understand what the link patterns mean
or represent.

A concise link pattern having a shorter label is more understandable and
preferable. So, we formalize the conciseness of link pattern c as follows:

conc(c) = a−(|inte(c)|−1) (a > 1) . (3)

inte(c) is the intent of c and the value of conc(c) is in the range (0, 1].
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Specificness. As shown in Figure 4, the link pattern lattice LPL provides a
hierarchy among link patterns. The depth of link pattern in the hierarchy is
useful. The larger the depth of link pattern is, the more specific the link pattern
is. We measure the depth of link pattern c:

depth(c) = distance(a, c) , (4)

where distance(a, c) is the length of a shortest path from a (the greatest ele-
ment of LPL) to c. Further, we normalize depth(c) into the range [0, 1] as the
specificness of link pattern c:

spec(c) =
depth(c)

D(c)
,

D(c) = distance(a, c, b) .

(5)

distance(a, c, b) is the length of a shortest path from a, through c, to b (the
least element of LPL).

4.2 Selecting Link Patterns

For diversity and coverage considerations, we aim to select top–K link patterns
that are as informative, concise and specific as possible while being able to
retrieve as many linked entities as possible.

Our problem can be formalized based on the Budgeted Maximum Cov-
erage (BMC) model [12]. The BMC problem is defined as follows: Let S =
{S1, S2, . . . , Sm} be a collection of sets defined over a domain of elements X =
{x1, x2, . . . , xn}. Each set has a cost {ci}mi=1 while each element has a weight
{wi}ni=1. The goal is to find a collection of sets S′ ⊆ S, such that the total cost
of S′, denoted by c(S′), does not exceed a given budget B, while the total weight
of elements covered by S′, denoted by w(S′), is maximized. c(S′) and w(S′) are
defined as follows:

c(S′) =
∑

Si∈S′

ci , (6)

w(S′) =
n∑

j=1

(
wj · f(xj , S

′)}
)
, (7)

where

f(xj , S
′) =

{
1 if xj is covered by S′.

0 otherwise.
(8)

In our context, each link pattern can be considered as a set Si ∈ S and all
the linked entities as the elements X. The weight of each element is trivially set
to 1. The cost of Si is defined as follows:

ci =
(1
e

)σ(Si)

. (9)
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σ(Si) is a scoring function of link pattern Si as follows:

σ(Si) = α1 · infoK(Si) + α2 · conc(Si) + α3 · spec(Si) , (10)

where α1, α2, α3 ∈ [0, 1] indicate the weights for each metric to be tuned empir-
ically. According to Equation (9), the higher the score of a link pattern is, the
less the cost is.

BMC is an NP-hard problem and several efficient approximation algorithms
have been developed. By comparing the approximation ratio and the time com-
plexity of these algorithms, we use the 1

2 · (1−
1
e ) approximation algorithm with

time complexity O(m2n) provided by [12] in our implementation.

5 Evaluation

In this section, we first present the frequency distribution of link patterns in
two real-life datasets (Section 5.1). Then, we describe an overview of the pro-
totype system (Section 5.2) and compare it with two Linked Data browsers by
conducting a user study in section 5.3. Finally, we evaluate the performance of
our approach by measuring the average execution time in section 5.4.

5.1 Data Sets

This section aims to show thatminimum number restriction and conjunctive link
patterns do exist widely in real-life data sets such as DBpedia3 and Semantic
Web Dog Food4.

Data Collection. As to DBpedia, we used the DBpedia mapping-based prop-
erties dataset, excluding RDF triples containing literals. We selected 8 classes
(i.e., Scientist, Artist, Athlete, City, River, Company, University, Film).

For each class, we firstly collected the top 1000 entities according to de-
scending order of the number of their related entities (i.e., the degree of node in
RDF graph). Secondly, we established 100 entity sets and each set included 10
entities by selecting at random from these 1000 entities. Finally, we calculated
the percentage of entity sets having minimum number restriction (k >1) and
conjunctive link patterns in these 100 entity sets.

As to Semantic Web Dog Food, we firstly selected 3 classes: Person (7,180
entities), Organization (1,965 entities) and Conference (20 entities). For the first
two classes, we collected the top 100 entities (using the same method as above).
For Conference, we collected all the entities. Secondly, we established entity sets
for each class. For Person and Organization, we established 10 entity sets and
each set included 10 entities by selecting at random from these 100 entities.
For Conference, we established 5 entity sets and each set included 4 entities by
selecting at random from these 20 entities. The method calculating the frequency
distribution of link patterns was the same as above.

3 http://wiki.dbpedia.org/Downloads2014
4 http://data.semanticweb.org/
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Fig. 6: Link patterns in DBpedia. Fig. 7: Link patterns in Semantic Web
Dog Food.

Data Analysis. In Figure 6, minimum number restriction link patterns (e.g.,
(min k)distributor, (min k)developer−1) are found in more than 50% of Film
and Company entity sets. Artist and City have more conjunctive link patterns
(e.g., occupation ∧ foundedBy−1, birthP lace ∧ residence), which occupied 70%
of entity sets.

In Figure 7, around 60% of entity sets of Person have minimum number
restriction link patterns (e.g., (min k)made, (min k)based near). Every class
has more conjunctive link patterns (e.g., made ∧ author−1, affiliation−1 ∧
member).

In summary, we investigate entities having the largest number of linked enti-
ties in two datasets because the above link patterns are more likely to be observed
there. As expected minimum number restriction and conjunctive link patterns
exist widely in many classes, which can be used to improve entity navigation.

5.2 Overview of Prototype

We implemented our proposed approach as a navigation module (called “Link”)
in a Link Data browser, SView5. Figure 8 shows a screenshot of “Link” in SView.

Users can start browsing with an entity URI by entering into the input box
(A). Navigation was provided in the “Link” panel. The left-hand side of the
interface lists the label of link patterns (B). The right-hand side lists linked
entities (C). Users can click the button “browse all” to explore all the linked
entities (D). Also, users can choose some link patterns to filter the target entities
(E).

5.3 User Study

We conducted a user study to compare our approach with two Linked Data
browsers (i.e., OpenLink Faceted Search & Find Service, Rhizomer6), and to
evaluate the effectiveness of our approach.

5 http://ws.nju.edu.cn/sview/
6 http://rhizomik.net/html/rhizomer/
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Fig. 8: A screenshot of “Link” in SView.

Table 3: An example of navigation tasks about Steven Spielberg

Tasks

G1
E1 Explore the information related to Steven Spielberg.
F1 Find the films directed and also produced by Steven Spielberg.

G2
E2 Explore the information related to the films directed by Steven Spielberg.
F2 Find the actors starred in at least 2 films directed by Steven Spielberg.

Participant Systems. As reviewed in the Related Work section, the only active
tools capable of entity-set-oriented browsing are gFacet, Parallax, OpenLink
Faceted Search & Find Service, Rhizomer and Visor. We did not include Visor
and gFacet because their interfaces are based on graphs. We did not consider
Parallax because it only tied to Freebase. OpenLink Faceted Search & Find
Service and Rhizomer provide a user interface with HTML and components
similar to those we propose.

Tasks. In a browsing scenario, navigation tasks can be divided into two types:
Explore (a user has a fuzzy need) and Find (a user has a clear need) tasks [14,16].
According to navigation paradigm, tasks can also be divided into two groups:
single-entity-oriented (G1 ) and entity-set-oriented (G2 ) tasks.

We used 8 classes of entities from DBpedia dataset in section 5.1. For each
class, we selected 10 entities from the top 1000 entities at random as the starting
points of user navigation. For each starting point, we established 4 navigation
tasks. The navigation tasks about Steven Spielberg is shown in Table 3.

Procedure. The subjects consisted of 24 students majoring in computer science
who were familiar with the Web, but with no knowledge of our project. The
evaluation was conducted in three phases.
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Table 4: Navigation questionnaire
Questions

Q1: The number of navigation options (links) was overwhelming.
Q2: The navigation options (links) were well organized.
Q3: The navigation option (link) titles were understood well.
Q4: The navigation options (links) were pleasantly surprising.
Q5: It was easy to reorient myself in the navigation.

Table 5: Results of navigation questionnaire

Response: Mean (SD) F (2, 69) LSD post-hoc
OpenLink Rhizomer SView (p-value) (p < 0.05)

Q1:
3.919 3.75 2.667 21.643 OpenLink,Rhizomer > SView
(0.717) (0.854) (1.095) (0.000)

Q2:
3.026 3.24 4.11 13.580 SView > OpenLink,Rhizomer
(1.052) (1.014) (0.887) (0.000)

Q3:
3.833 4.00 2.583 9.658 Rhizomer,OpenLink > SView
(0.717) (0.582) (0.62) (0.000)

Q4:
2.58 3.25 4.33 11.958 SView > OpenLink,Rhizomer

(0.793) (1.055) (0.778) (0.000)

Q5:
3.917 3.667 3.5 11.367 OpenLink > Rhizomer, SView
(0.514) (0.778) (0.937) (0.000)

First, the subjects learned how to use the given systems through a 20 min
tutorial, and had additional 10 minutes for free use and questions. Second, the
subjects used each of the three systems arranged in random order. For each
system, the subjects were randomly assigned to one starting point, and required
to complete 4 navigation tasks. Meanwhile, the starting points of user navigation
among the three systems were different. The subjects were asked to complete all
the tasks in 30 minutes. We recorded their answers, and the time they spent on
each task.

With regard to each system, the subjects responded to the navigation ques-
tionnaire, as shown in Table 4. Then, for each system, the subjects responded to
the widely-used system usability scale (SUS) questionnaire [4]. The questions in
the two above questionnaires were responded by using a five-point Likert scale
ranging from 1 (strongly disagree) to 5 (strongly agree). Finally, the subjects
were asked to comment on the three systems.

Results and Discussion.

User Experience. Navigation questionnaire Q1–Q5 captured subjects’ naviga-
tion experience with different systems in Table 5. Repeated measures ANOVA
revealed that the differences in subjects’ mean ratings were all statistically sig-
nificant (p < 0.01). LSD post-hoc tests (p < 0.05) revealed that, according
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Fig. 9: Success rate of Find tasks. Fig. 10: Average consumption time of
Find tasks.

Table 6: SUS scores

Mean (SD) F (2, 69) LSD post-hoc
OpenLink Rhizomer SView (p-value) (p < 0.05)

59.62 67.31 75 10.195 SView > Rhizomer > OpenLink
(9.177) (9.098) (7.706) (0.001)

to Q1, OpenLink and Rhizomer provided too many links compared with SView.
According to Q2, SView provided a better organization of links than OpenLink
and Rhizomer. According to Q3, OpenLink and Rhizomer helped subjects more
easily understand the label of links. According to Q4, SView directly provided
subjects with more interesting relationships among the entities. Finally, accord-
ing to Q5, OpenLink and Rhizomer helped subjects keep track of browsing and
provided easy rollback.

Table 6 summarizes SUS scores of different systems. Repeated measures
ANOVA revealed that the difference in SUS score was statistically significant
(p < 0.05). LSD post-hoc tests (p < 0.05) revealed that SView was more usable
than OpenLink and Rhizomer.

User Behavior. Figure 9 shows the success rate of Find tasks. In F1, using
SView, subjects achieved the highest overall success rate. In F2, the situation
was similar. Figure 10 shows the average time spent on Find tasks. According to
F1 and F2, using SView, subjects required far less time to complete these tasks,
because links were appropriately organized and selected.

User Feedback and Discussion. We summarized all the major comments that
were made by at least five subjects. On OpenLink, 21 subjects (88%) said the
large quantities of links often made it difficult to retrieve the target entities. 17
subjects (71%) said the browsing track assisted them to browse intermediate
entities. On Rhizomer, 20 subjects (83%) said faceted navigation helped them
filter out those entities that were not interesting. On SView, 22 subjects (92%)
said recommended patterns provided a fast locating mechanism, but 6 subjects
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Fig. 11: Execution time of link pattern
lattice construction.

Fig. 12: Execution time of link pattern
selection.

(25%) said it had some potential risks, such as target losses (i.e., not covering all
the needed entities). 10 subjects (42%) said the diverse link patterns made users
know more potential relationships among the entities, but 8 subjects (33%) said
some link pattern labels were too long to be understood.

5.4 Performance Evaluation

We evaluated the performance of link pattern lattice construction and link pat-
tern selection by measuring the average execution time for varying number of
current entities denoted by m (m from 5 to 200). The two algorithms were im-
plemented in Java and carried out on an Intel Xeon E3 3.2GHz CPU, Windows
7 with 10GB JVM.

As can be seen from Figure 11 and Figure 12, the two algorithms were rea-
sonably fast in practice. When m increased, the curves of the two algorithms
kept ascend slowly. In Figure 11, it took 2 seconds to construct a lattice for 80
current entities, and 5 seconds for 200 current entities.

6 Conclusion

In this paper, we propose a novel concept called link pattern, in particular link
pattern with minimum number restriction as well as conjunctive link pattern. It
enables a new way of semantic navigation over linked entities. We also describe
how to generate link pattern lattice and how to select top-K link patterns in the
context of entity browsing. The proposed approach is implemented in a prototype
system. The evaluation results demonstrate that link patterns effectively make
explicit complex relationships among entities, and help users discover target
entities more quickly.

Currently, link patterns are generated based on the “local” context, i.e. the
data about current entities being visited. It is interesting to consider a way to
extract link patterns from the “global” context, i.e. the Web of Data. Another
future work is to study “human factors” in the context of entity navigation. For
example, users’ preference on link patterns can be collected and then leveraged
to select patterns more intelligently.
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