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Abstract. Client-side query processing techniques that rely on the ma-
terialization of fragments of the original RDF dataset provide a promising
solution for Web query processing. However, because of unexpected data
transfers, the traditional optimize-then-execute paradigm, used by exist-
ing approaches, is not always applicable in this context, i.e., performance
of client-side execution plans can be negatively affected by live conditions
where rate at which data arrive from sources changes. We tackle adaptiv-
ity for client-side query processing, and present a network of Linked Data
Eddies that is able to adjust query execution schedulers to data avail-
ability and runtime conditions. Experimental studies suggest that the
network of Linked Data Eddies outperforms static Web query schedulers
in scenarios with unpredictable transfer delays and data distributions.

1 Introduction

The Linking Open Data cloud has experienced an impressive growth over the last
decade [11], and consequently, the number of Linked Data applications is pro-
gressively increasing [6]. Although this situation evidences the success of Linked
Open Data movements, it also encourages the Semantic Web community to ur-
gently develop computational tools that effectively manage Linked Data.

Managing Linked Data usually requires accessing RDF datasets through spe-
cific Web access interfaces, e.g., SPARQL endpoints [5] or Triple Pattern Frag-
ments (TPFs) [15]. SPARQL endpoints allow users to pose any SPARQL query
against SPARQL servers, whereas TPFs are specific for triple-patterns, and their
evaluations can be paged and retrieve metadata about the fragment page size,
and the approximated fragment size. Further, SPARQL query engines implement
data management techniques and execute queries against these Web access in-
terfaces. Examples include federated query engines for SPARQL endpoints [1, 7,
12], and the client-side SPARQL query engine [15] against TPF servers.

Despite these developments, the Web-alike characteristics of Linked Data
sources impose fundamental challenges on Linked Data management. The lack
of statistics about selectivities and data distributions, unpredictable data trans-
fer rates and server workload, can negatively impact the effectiveness of query



engines against Linked Data, even in presence of the innovative querying capabil-
ities offered by SPARQL endpoints and TPFs. This problem is mainly generated
because existing Linked Data query engines implement execution query strate-
gies that rely in some way, on the traditional optimize-then-execute paradigm,
instead of following adaptive query strategies that adjust query executions to
unexpected data source conditions. Thus, our main research problem is to de-
vise adaptive query processing techniques that exploit properties of Linked Data
technologies, and opportunistically adjust schedulers according to data availabil-
ity and runtime conditions. Thus, query plans will be changed on a tuple-by-tuple
basis, and answers will be produced as soon as they become available.

Adaptive query processing strategies have been extensively studied in the
context of heterogeneous databases [3, 4, 10]. They can be divided into intra- and
inter-operator solutions, and routing operators. Additionally, adaptivity can be
implemented at different granularity levels: Fine-grained granularity indicates
adaptation of small processes, e.g., per-tuple basis; while granularity is coarse-
grained whenever adaptivity is attempted for large processes. Intra-operator
techniques implement fine-grained granularity adaptivity, even in the context of
a fixed query plan. Contrary, inter-operator techniques re-schedule initial plans
based on: uncertainties in the execution cost, size of intermediate results, and
unexpected delays. Finally, eddies [9] are routing operators that continuously
reorder a query execution, by routing each intermediate tuple through the query
operators in a variety of orders that simulate different query plans. Routing
policies determine the routing destination of intermediate tuples. Eddies can be
executed in a distributed fashion to avoid bottlenecks of a centralized eddy [13].

Building on these query processing strategies, we devise a novel client-side
query processing engine that builds a network of Linked Data Eddies (nLDE) to
opportunistically execute SPARQL queries against TPF servers. First, an nLDE
relies on TPF metadata [15] to identify an initial bushy tree plan that reduces
intermediate results. Leaves of the plan are grouped in star-shaped subtrees and
internal nodes represent adaptive physical operators. Thus, intra-operator adap-
tivity is initially achieved. Simultaneously, eddies are created and empowered
with Linked Data metadata to route tuples through the adaptive operators by
following a pipeline strategy. We propose an innovative eddy routing policy that
considers well-known SPARQL optimization heuristics [14]. In our approach, ed-
dies are autonomous and any of them can produce query answers from tuples
that have been already routed through all the nLDE adaptive operators. In this
way, nLDE addresses adaptivity by executing different plans per tuple.

We empirically study the effectiveness of our network of Linked Data Eddies
engine (nLDE engine) on SPARQL queries against RDF data exposed via TPF
servers. Under the assumption of networks with no delays, we compare our query
optimization techniques and adaptive strategies with the current TPF client. Ex-
perimental outcomes suggest that nLDE plans conduce to execution schedulers
able to overcome drawbacks caused by the lack of data distributions even for
queries with large intermediate results. Furthermore, we study the performance
of our nLDE engine in presence of data transfer delays. The observed results con-
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Fig. 1. Different query plans to execute the query from Listing 1.1. The number of
intermediate results produced by each operator are enclosed in parenthesis.

firm that routing adaptive query processing strategies provide a flexible solution
for Linked Data management in unpredictable environments.

This paper comprises five additional sections. The following section illustrates
a motivating example. We then define our approach in Section 3, and Section
4 presents experimental results. The related work is summarized in Section 5.
Finally, we conclude in Section 6 with an outlook to future work.

2 Motivating Example

Consider the query from Listing 1.1 to retrieve the drugs classified as DBpedia
and Yago alcohols that share same routes of administration to be executed using
the TPFs for the English version of DBpedia.1 The page size of these fragments
is 100 and further metadata for each triple pattern is shown in Listing 1.1.

Listing 1.1. SPARQL query against DBpedia to retrieve information about
resources classified as alcohols. Prefixes are used as in http://prefix.cc/

0 SELECT ∗ WHERE {
1 ?d1 dcterms : s u b j e c t dbped ia : Category : A l c o h o l s . # Count : 695
2 ?d2 r d f : t ype yago : A l c o h o l s . # Count : 529
3 ?d1 dbprop : r o u t e s O f A d m i n i s t r a t i o n ?o . # Count : 2430
4 ?d2 dbprop : r o u t e s O f A d m i n i s t r a t i o n ?o . } # Count : 2430

We executed the query from Listing 1.1 using first the current TPF client2,
which follows a combination of left-linear plans with Nested Loop Joins to eval-
uate the query, as depicted in Figure 1(a). In this approach, the triple pattern
with the smallest cardinality (Count) is executed first; in our example, this corre-
sponds to tp2 with approximately 529 results. For each binding of tp2, the TPF
client instantiates the next triple pattern, in our example this would be tp4, and
retrieves all the resulting fragments. The execution continues with this strategy
for each tuple of the intermediate results. The results of executing the example
1 http://fragments.dbpedia.org/2014/en
2 https://github.com/LinkedDataFragments/Client.js
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Fig. 2. Diverse execution plans generated by re-ordering the execution of operators
during query execution. Dashed lines represent routing of tuples to operators.

SPARQL query are reported in the table of Figure 1(c). The execution stopped
after 318.90 seconds, produced 1,398 results, and performed 1,693 requests.

Consider now executing the example query with the plan depicted in Fig-
ure 1(b). The shape of this plan corresponds to a bushy tree in which several
subtrees can be executed simultaneously, reducing the number of intermediate
results. For instance, the left-linear plan in Figure 1(a) for the example query
produces 136 + 71, 141 = 71, 277 intermediate results, while the bushy tree plan
in Figure 1(b) for the same query produces 173+136 = 309 intermediate results.
Moreover, joining the results with a symmetric operator is less expensive in this
case considering the cardinalities and page size of the fragments. For instance,
joining tp2 and tp4 with a Nested Loop Join results in ∼ 535 requests (6 re-
quests to retrieve the fragment of tp2 plus 529 requests for each binding), while
performing a Symmetric Hash Join generates only ∼ 31 requests (6 requests for
tp2 plus 25 requests for tp4). The execution of the bushy tree plan successfully
finalized in 3.03 seconds, and produced 5,651 results3 with 67 requests.

These results were obtained under the assumption of a network with no de-
lays. However, even efficient plans, like the one from Figure 1(b), can be affected
under the presence of data transfer delays. To illustrate, consider that the source
that resolves tp2 becomes very slow; then, tuples retrieved for tp4 can be routed
to another join operator as depicted in Figure 2(a). The result of re-routing tu-
ples from tp4 is a new plan shown in Figure 2(b), in which the delayed source is
evaluated at the end. The plan can further change, as depicted in Figure 2(c).
We executed the plan from Figure 2(a) on a network with a total delay4 of 1.99
seconds. When implementing the adaptivity presented in Figure 2, all the results
were produced in 3.86 seconds, which suggests that adaptivity was able to hide
1.16 seconds of the total delay. We tackle adaptivity in Linked Data manage-

3 The same number of results was obtained when executing the query against the
DBpedia endpoint at http://dbpedia.org/sparql.

4 Sum of all elapsed waiting times between receiving a fragment page i and the sub-
sequent page i+ 1.



ment, and propose a client-side query engine that builds a network of routing
operators able to adjust execution schedulers to this type of scenarios.

3 Our Approach

We devise a query processing engine tailored to issue SPARQL queries in which
RDF sources are accessed in a triple-pattern fashion. In particular, we focus
on optimizing and executing queries against Triple Pattern Fragment (TPF)
servers [15]. The main components of our engine are: i) The query optimizer,
tailored to reduce the number of intermediate results and requests posed to the
data source; and ii) The adaptive routing query engine that implements a
network of eddies, able to dynamically adapt the optimized plan according to
current execution conditions, e.g., network delays or unpredictable selectivities.

3.1 Query Optimizer

We propose a query optimizer to devise physical plans that can be efficiently ex-
ecuted against TPF servers, and make use of the metadata provided in each frag-
ment. Given a query Q, our optimizer (see Algorithm 1) starts retrieving meta-
data for each triple pattern in Q (lines 1-2); in particular, it selects the estimated
number of triples or cardinality of the fragment (count) and the number of triples
accessed per fragment page (pagesize). Then, the algorithm orders the triple
patterns according to their count value (line 3). Following our example query Q
from Listing 1.1, triple patterns are ordered as follows: Q′ = 〈tp2, tp1, tp3, tp4〉.

The optimizer then proceeds in three phases as follows. In the first phase, the
algorithm groups triple patterns as star-shaped groups (SSGs), i.e., sets of triple
patterns that share one variable;5 SSGs can be efficiently executed against RDF
data [16]. The optimizer starts by selecting the first triple pattern of the list Q′
(line 6), i.e., s is the pattern with the smallest cardinality, which in our example
is tp2. Then, s is joined with a triple pattern tp′i in Q′ that shares variables in
common. If the number of accesses to retrieve the fragment of tp′i is less than
the estimated number of instances in s, then the optimizer places a Symmetric
Hash Join (onSHJ), otherwise a Nested Loop Join (onNL) is placed (lines 10-13).
For instance, as shown in Section 2, (tp2 onNL tp4) results in 535 requests, while
(tp2 onSHJ tp4) generates only 31 requests. The value count of the star is updated
(line 14) with an estimation of the number of intermediate results that will be
generated, i.e., cardinalityEstimation. In the absence of selectivity factors of
triple patterns, we empirically tested different estimators (sum, product, and
maximum) to approximate cardinalityEstimation; we selected the sum since
it provided a more realistic estimation. This stage is completed when all triple
patterns in Q belong to a SSG. The result of this stage is the set S with SSGs,
which in our running example would be: S = {(tp2 onSHJ tp4), (tp1 onSHJ tp3)}.

In the second phase, the optimizer builds bushy tree plans by combining
subtrees created so far, e.g., the star-shaped groups identified previously. In
5 A star-shaped group can be composed of only one triple pattern.



Algorithm 1: Physical Optimizer
Input: Query Q = {tp1, tp2, ..., tpn}
Output: Bushy tree plan PQ for Q
// Get triple pattern metadata

1 for tpi ∈ Q do
2 (tpi.count, tpi.pagesize)← getMetadata(tpi)

// Order Q such that tp′
i.count ≤ tp′

i+1.count

3 Q′ ← 〈tp′
1, tp′

2, ..., tp′
n〉

// Phase 1: Build index star-shaped groups (SSG)
4 S ← ∅
5 while Q′.length() > 0 do
6 s← Q′.getF irst()
7 varss ← vars(s)
8 for tp′i in Q′ do
9 if |varss ∩ vars(tp′

i)| = 1 then
10 if (tp′

i.count/tp′
i.pagesize) ≤ s.count then

11 s← (s onSHJ tp′
i)

12 else
13 s← (s onNL tp′

i)
14 s.count←cardinalityEstimation(s.count, tp′i.count)
15 Q′.remove(tp′i)
16 S ← S ∪ {s}

// Phase 2: Build bushy tree to combine SSGs with common variables
17 PQ ← S
18 do
19 P ′

Q ← PQ

20 Select si and sj from PQ such that vars(si) ∩ vars(sj) 6= ∅
21 PQ ← PQ − {si, sj}
22 PQ ← PQ ∪ {(si onSHJ sj)}
23 while P ′

Q 6= PQ

// Phase 3: Place joins between SSGs with no common variables
24 do
25 Select si and sj from PQ

26 PQ ← PQ − {si, sj}
27 PQ ← (PQ onSHJ sj)
28 while |PQ| > 1
29 return PQ

order to join two subtrees, the subtrees must share at least one variable in
common (line 20). Following the running example, subtrees (tp2 onSHJ tp4) and
(tp1 onSHJ tp3) are joined since they share the variable ?o. All subtrees are joined
in this stage with Symmetric Hash Join operators; which allows for executing
different subtrees of the plan simultaneously. This stage finishes when no subtrees
can be further combined (line 23). The outcome is a set of bushy trees PQ.

Finally, in the third stage, subtrees that could not be joined before (since
they share no variable in common) are combined. For the example query, our
algorithm managed to build the efficient plan from Figure 1(b). In general, the
optimizer produces a bushy tree plan PQ for Q that allows for reducing inter-
mediate results, and opportunistically places join operators aiming at reducing
the number of requests to the sources.

3.2 Adaptive Routing Query Engine

The plan PQ devised by the optimizer is then executed by the adaptive query
engine designed to operate in unpredictable environments. Our query engine per-



forms routing operator adaptivity [9], able to change the order of the initial plan
according to the current conditions of execution. Tuples generated during query
execution can be routed to physical operators following a different order than
the one designated by the optimizer, but respecting the relationships between
operators in PQ. In our engine, adaptivity is performed on a tuple-based basis.

In order to perform this routing adaptivity, physical operators used to execute
the plan PQ should follow a pipelining strategy [9], i.e., able to produce tuples
incrementally as soon as data from a source become available. This type of
operators are denominated adaptive operators. Considering that PQ contains n
adaptive operators, each operator is identified with a different label from 0 to
n− 1. For example, in Figure 2, the label of the Join operator between tp1 and
tp3 is 0. In addition, each operator has a priority initially given by the execution
order induced by PQ, but operator priorities are updated as the execution goes
on. In the following we define an adaptive operator in our query engine.

Definition 1 (Adaptive Operator). Given an initial query plan PQ for a
query Q, an adaptive operator o is a physical non-blocking operator in PQ.
Each operator o in PQ is annotated with two numbers denoted by label(o) and
priority(o), such that:

– label(o) corresponds to an identifier of o in PQ and is unique;
– priority(o) represents the priority of o in PQ and induces the order in which
o has to be executed in PQ.

During query execution, tuples are sent from adaptive operators to eddies. An
eddy [2] is an operator that serves as a tuple router, that dynamically flows tuples
through plan operators. To do so, eddies rely on tuple annotations denominated
Ready and Done vectors. The Ready vector of a tuple indicates operators eligible
to process that tuple. In our running example, tuples resulting from tp1 should
be processed by operators 0 and 2, but not by operator 1 – according to the
plan from Figure 2(a); therefore, the Ready vector of these tuples is 101. The
Done vector of a tuple indicates the operators that have already processed that
tuple. For instance, if a tuple has only been processed by operator 1, then its
Ready vector is 010. All tuples that flowed into an eddy e are introduced into
a routing buffer RBe, and are routed to the next adaptive operator following a
routing policy RPe (cf. Section 3.3). Operators that have not processed a tuple t
in RBe are computed by performing the bitwise operation Readyt − Donet; then,
one adaptive operator is selected by its priority according to the implemented
routing policy RPe. Figure 3 illustrates the components RBe and RPe of an
eddy. In this example, the tuple t = {d1=dbpedia:Bupranolol, o=”Oral, topical”}
in RBe is annotated with Ready=101 and Done=100; RPe decides to route the
tuple to operator 2 since it is the only operator that has not processed t yet.

Eddies in our approach are enhanced with the capability of directly out-
putting results when a tuple has been processed by all operators. This allows for
pipelining final results efficiently. In contrast, in the distributed eddies proposed
by Tian and DeWitt [13], final results are routed to an intermediary eddy (eddy
sink). When queries produce large amount of results, the eddy sink could become
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{d1=dbpedia:Avanagil, d2=Beraprost, o=“Oral” } 111 111
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Fig. 3. Eddy operator e: Tuples are inserted into the Routing Buffer (RBe), annotated
with Ready and Done vectors. The Routing Policy (RPe) selects the operator to route
tuple t. Eddy outputs a tuple when it has been processed by all operators (Done=111)

a bottleneck, while in our approach the final output is produced in parallel by
several autonomous eddies. In the following, we provide a definition of an eddy.

Definition 2 (Eddy Operator). Given an initial query plan PQ with n adap-
tive operators. An eddy e to execute PQ is defined as a 2-tuple=(RBe, RPe) where
RBe corresponds to a routing buffer and RPe is a routing policy. RBe contains
a set of tuples generated during the execution of PQ. Each tuple t in RBe is
annotated with a pair of n-bit vectors named Readyt and Donet, such that:

– A value of ON in the entry i of the Readyt vector of t indicates that t should
be processed by the adaptive operator o such that label(o) = i.

– A value of ON in the entry i of the Donet vector of t indicates that t has
been already processed by the adaptive operator o such that label(o) = i.

– t is produced as an output of the evaluation of PQ when all entries in its
Donet vector are ON (e is autonomous).

RPe is a function to route tuples from the eddy e to adaptive operators of PQ.
RPe receives a tuple t in RBe and outputs the identifier label(o) of the adaptive
operator o where t will be sent to.

Our query engine implements an adaptive network to execute query plans,
called network of Linked Data Eddies (nLDE). An nLDE is composed of a set of
adaptive operators and a set of eddies that dynamically send tuples among each
other, constructing a bipartite graph G (see Figure 4). The number of adaptive
operators is given by the plan to be executed. An eddy can get “clogged” when
non-selective queries are executed against sources, and the transfer rate is faster
than what the eddy is able to process. In order to avoid a “clogged” eddy, several
eddies can be part of an nLDE such that the workload is distributed. This
is particularly important when executing non-selective queries in which large
amounts of intermediate results (tuples) have to travel through the network.
Future work could focus on studying the optimal number of eddies in a network
given the characteristics of a query, or even creating eddies on demand.

Figure 4 depicts an nLDE with two eddies for the query plan from Fig-
ure 2(a) of our running example. Edges in graph G from eddies to adaptive



operators indicate that tuples were sent through these routes. Assuming that
Eddy 0 is the one depicted in Figure 3, the nLDE contains an edge from Eddy 0
to operators 2 and 1 since tuples {d1=dbpedia:Bupranolol, o=“Oral, topical”} and
{d2=dbpedia:Ethynol} were routed to these operators, respectively. Analogously,
an edge from an adaptive operator to an eddy indicates that at least a tuple was
sent through that route. For instance, Figure 4 depicts an edge from the Join
operator with label 0 to the Eddy 0. When inspecting the routing buffer of Eddy
0 (Figure 3), the tuple {d1=dbpedia:Bupranolol, o=“Oral, topical”} is annotated
with Done=001, indicating that this tuple was only processed by the operator
with label 0, therefore this operator was the one that sent the tuple to Eddy 0.

Besides eddies and adaptive operators, nLDE takes into consideration the
characteristics of SPARQL queries and properties of Linked Data sets accessed
to resolve different portions of a query. This information is denominated Triple
Pattern Descriptor (TD) and consists of annotating the triple patterns from the
query with metadata. A TD is then exploited by eddies in an nLDE to devise
efficient routes to process RDF data. Figure 4 illustrates the TD for our running
example: Triple patterns of the query are annotated with their corresponding
cardinality (number of triples) and with the position of joins (e.g., joins by
subject-subject and object-object) with other patterns. However, one important
factor when executing queries is the selectivity of operators: Operators with high
selectivity produce less intermediate results. Due to skewed data distribution in
RDF datasets, selectivity may vary depending on the RDF resources that are
being processed and cannot be a priori estimated by solely analyzing triple pat-
tern cardinalities. We propose therefore an eddy routing policy (cf. Section 3.3)
tailored for RDF data that considers not only the productivity of operators but
also the position of joins in SPARQL queries [14] to favor the routing of tuples
to join operators where the estimated selectivity is high. In the following, we
define a network of Linked Data Eddies and its components.

Definition 3 (Network of Linked Data Eddies). Given a query Q and a
query plan PQ for Q, a network of Linked Data Eddies for PQ is a 2-tuple
nLDE = (G,TD), where G is a bipartite graph G = (E ∪ O, V ) and TD is a
triple pattern descriptor. E is a set of eddy operators, O is the set of adaptive
physical operators in PQ, and V is a set of directed edges, such that:

– V ⊆ (E ×O) ∪ (O × E).
– If (e, o) belongs to V then the eddy e has routed at least one tuple to the

adaptive operator o.
– If (o, e) belongs to V then the adaptive operator o has sent at least one tuple

to the eddy e.

TD corresponds to a set of pairs (tp, Mtp), where tp is a triple pattern of Q
and Mtp corresponds to metadata of tp. Example of metadata properties could
be: join position, RDF data source, cardinality, and fragment page size.

In order to ensure the correct processing of tuples, eddies and adaptive oper-
ators should respect a set of rules. For instance, eddies cannot route a tuple to
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Fig. 4. Network of Linked Data Eddies (nLDE). Eddies and adaptive operators con-
stitute a bipartite graph G. Edges in G represent routing paths of tuples. The Triple
Pattern Descriptor (TD) of an nLDE maintains information about triple patterns from
the query: metadata and operator position, e.g., subject-subject (ss), object-object (oo)

an arbitrary operator, but it has to consider the processing history of the tuple –
given by its Ready and Done vectors. This restriction is defined in the following.

Definition 4 (Routing Rule from Eddy to Adaptive Operator). Given
an eddy operator e = (RBe, RPe) and a set of adaptive operators O in an nLDE,
RPe routes tuples from RBe according to the following rule:
– e can route a tuple t in RTe to an adaptive operator o ∈ O with identifier
label(o) = i only if Readyt[i] = ON and Donet[i] = OFF; the set of operators
that meet these conditions for t are denominated ‘eligible operators of t’.

Note that an adaptive operator has no restrictions on selecting an eddy to
send a tuple to. However, before sending a tuple to an eddy, the adaptive operator
has to build the Ready and Done vectors of the tuple. The correct creation of
the Ready vector ensures that the tuple will not be processed more than once
by an adaptive operator. Furthermore, the correct creation of the Done vector
guarantees that the tuple will be processed by all the corresponding operators.
In the following, we present the rules to create Ready and Done vectors of tuples.

Definition 5 (Rules to Create Ready and Done Vectors). Given an adap-
tive operator o in an nLDE and a set of eddy operators E. Consider a tuple t
produced by a binary operator o when combining tuples ti and tj. The tuple t is
sent to an eddy operator e ∈ E respecting the following rules:
– Readyt corresponds to the bitwise OR logical operation of the Ready vectors

of tuples ti, tj, and the identifier of o represented by label(o),
– Donet corresponds to the bitwise OR logical operation of the Done vectors of

tuples ti and tj.
In case the operator o is unary, Donet is updated by performing the bitwise OR
logical operation with label(o), while Readyt remains the same.

The execution of a query Q with an nLDE satisfies the following property:

Property 1 (Soundness). Given a query Q and a network of Linked Data Eddies
nLDE = (G = (E ∪O, V ), TD) for a query plan PQ. A tuple t produced by an
eddy e ∈ E belongs to the set of answers of the query Q if and only if all the
entries of the Donet vector are equal to ON.



3.3 Routing Policies

Routing Policy from Eddy to Adaptive Operator. Tuples in the routing buffer
of an eddy are processed following a strategy first-come, first-served (FCFS),
i.e., oldest tuples are attended first. When a tuple t is routed from an eddy,
the routing policy selects among the ‘eligible operators of t’ the one with the
highest priority. Operator priorities are initialized according to the plan devised
by the optimizer: Operators with the highest priority value should be executed
first. In our running example, operators 0 and 1 have higher priority values than
operator 2. During query execution, the priority of operator o with label(o) = i
is updated as follows: priority(i) = 1− #tuples received from i

#tuples routed to i . Measuring the ratio of
tuples produced vs. consumed by an operator allows for estimating its selectivity.
When join operators exhibit similar performance, an operator is chosen over the
others based on the join position specified in the triple pattern descriptor (TD)
of the nLDE, following the Heuristic 2 by Tsialiamanis et al. [14]. Additionally,
our routing policy respects the following restrictions: 1) Tuples are not routed
to non-symmetric operators, otherwise the number of requests to sources could
be increased; 2) Tuples are not routed to operators that do not share variables
in common, to avoid the generation of large amount of tuples in the network.

Routing Policy from Adaptive Operator to Eddy. As explained in Section 3.2,
there are no restrictions when routing tuples to eddies. However, when several
eddies are part of an nLDE, it is important to design routing policies from adap-
tive operators that allow for distributing the workload among several eddies. In
this work, we implement a simple routing policy in which an operator randomly
chooses an eddy following a uniform distribution, i.e., all eddies have the same
probability to be selected. We empirically tested this policy and observed that
it is able to fairly spread tuples among eddies in the network.

4 Experimental Results

We empirically assess the effectiveness of a client-side network of Linked Data
Eddies (nLDE engine) to adapt query execution schedulers to unknown data
distributions and unexpected data transfer delays. The client-side Web query
engine of Triple Pattern Fragments (TPF client) [15] is used as the baseline of
the study. Below we describe the configuration settings used in our experiments.
Datasets and Query Benchmarks6: TPFs for the English version of DBpe-
dia are used as RDF data servers. We designed two benchmarks of queries by
analyzing triple patterns and sub-queries answerable for DBpedia. Benchmark
1 comprises 20 queries composed of basic graph patterns of between 4 and 14
triple patterns; these queries are non-selective and produce a large number of
intermediate results. Benchmark 2 is composed of a total of 25 queries that have
basic graph patterns of between three and six triple patterns; five queries about
topics in five domains: Historical, Life Sciences, Music, Sports, and Movies.
6 Benchmarks 1 and 2 are available at http://people.aifb.kit.edu/mac/nlde/.



Implementations: We implement proxies to configure data transfer delays.
Both the nLDE engine and proxies are implemented in Python 2.7.6. We evalu-
ate our experiments on a network with no delays, and in a fast network which
is simulated with a gamma distribution (α = 1, β = 0.3) of response latency
resulting in an average latency of 0.3 secs. The setting ‘nLDE (No Policy)’ rep-
resents the basic query optimization (no adaptivity): The plan devised by the
optimizer does not change. Experiments were executed on a Debian Wheezy 64
bit machine with CPU: 2x Intel(R) Xeon(R) CPU E5-2670 2.60GHz (16 physical
cores), and 256GB RAM. Timeout was set to 1,800 secs.
Evaluation Metrics: The following metrics are computed separately for each
benchmark. i) Execution Time: Elapsed time spent by a query engine to complete
the execution of a query. It is measured as the absolute wall-clock system time
as reported by the Python time.time() function. ii) Number of Requests: Total
number of requests submitted to the servers during query execution. iii) Number
of Answers: Total number of answers produced during the execution of a query
plan. Queries were run five times and we report on the average time.

4.1 Effectiveness of nLDE Optimization Techniques

The goal of this study is to determining the impact that query selectivity and
size of intermediate results have on the performance of client-side query engines
in networks with no delays. We compare the nLDE engine with the TPF client
on queries of Benchmark 1 and Benchmark 2. To compare the query optimiza-
tion and execution techniques of both engines under the same conditions, the
nLDE engine does not follow any routing policy, i.e., intermediate tuples are
processed following the plan originally produced by the nLDE optimizer (Algo-
rithm 1). Queries in Benchmark 1 are non-selective and produce a large number
of results, while Benchmark 2 comprises very selective queries that produce a
small number of results. Given the selectivity of queries in Benchmark 1, the
timeout at 1,800 secs. is reached in some of the queries. Thus, we present the
number of answers produced before timing out, in addition to the execution time.
Figures 5(a) and (b) report on Execution Time and Number of Answers in log-
arithmic scale, respectively. We can observe that plans generated by the nLDE
engine not only speed up the execution time, but they are able to produce more
answers for the executed queries. The nLDE engine only consumes more time
than the TPF client in queries Q5, Q8, Q10, and Q11, but as reported in Fig-
ure 5(b), the TPF client produces less number of answers than the nLDE engine
in these queries. These results suggest that bushy trees comprised of star-shaped
groups in conjunction with the nLDE adaptive operators, provide efficient exe-
cution schedulers to access TPF servers. Furthermore, we evaluate the overhead
that these engines may cause to the data servers during query execution. Results
of the execution of queries of Benchmark 2 are presented on Figures 6(a) and
(b); because both engines produce all answers for each query, we just report on
execution time and the number of requests submitted by each of the engines to
the TPF servers. As can be seen, nLDE bushy plans speed up query schedulers
by up to one order of magnitude, while they submit less requests to the TPF
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Fig. 5. Results for queries of Benchmark 1 for nLDE engine and TPF client; 20 non-
selective queries against TPFs for the English version of DBpedia. a) Execution Time
in secs. (log. scale), b) Number of Answers (log. scale). No delays in data transfer

servers in the majority of the queries. The reason for this is that left-linear plans
as the ones generated by the TPF client in conjunction with Nested Loop Join
operators, may produce a large number of intermediate results that conduce to
large number of requests to the TPF servers. In contrast, bushy plans composed
of star-shaped groups minimize the number of intermediate results and in conse-
quence, submit a small number of requests to the TPF servers. Thus, the nLDE
engine is able to retrieve data from the TPF servers in a more efficient fashion,
providing in this way, an effective approach for Linked Data management even
in ideal scenarios of simple queries (Benchmark 2) and networks with no delays.

4.2 Adaptivity of the nLDE Engine

The goal of this study is to evaluate the performance of the routing policies
implemented by the nLDE engine. Networks with delays allow for evaluating
the adaptivity of engines to unpredictable changes. We simulate a fast network
where data transfer rates are configured to respect a gamma distribution with
α = 1, β = 0.3. Further, we compare the execution time of the nLDE engine
when intermediate tuples are executed following the original plan (No Policy)
and when execution schedulers are adapted to the data transfer rates according
to our Routing Policy. Both instances of the nLDE engine produce the same
number of query answers and server requests, so we report on Execution Time in
milliseconds in Figure 7. As can be observed, the nLDE engine with the routing
policy exhibits better performance than the nLDE engine with no policy. It
is important to highlight that this scenario is quite troublesome for a routing
policy. When queries produce a small number of intermediate results the policy
might not have enough information to devise an efficient routing. Additionally,
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Fig. 6. Results for queries of Benchmark 2 in nLDE and TPF client; 25 Selective
Queries against TFPs for the English version of DBpedia; Five Queries per Domain.
a) Execution Time in secs. (log. scale), b) Number of Requests (log. scale)-No delays
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Fig. 7. Results for queries of Benchmark 2 in nLDE with No Routing Policy and nLDE
with our Routing Policy. 25 Selective Queries against TFPs for the English version of
DBpedia; Five Queries per Domain. Execution Time in msecs. Fast network simulated
with a Gamma distribution (α = 1, β = 0.3) of delays

when network is fast with a relative low latency the policy has to be lightweight
enough to process tuples arriving with fast rates. Despite of these conditions
and the overhead caused by routing intermediate results, the nLDE engine with
our routing policy is able to faster produce the complete results of the studied
queries. We hypothesize that even better performance will be observed in slower
networks and in presence of messy data distributions.

5 Related Work

We analyze the adaptivity granularity achieved by Web query processing ap-
proaches that rely on HTTP interfaces to access RDF data.

SPARQL endpoints exploit SPARQL expressiveness and efficiently access
RDF data. Nevertheless, they may suffer from typical Web-publishing problems,



i.e., connections may be slow or may, in the extreme, become unavailable. Ex-
isting federated engines, e.g., ANAPSID [1], FedX [12], and SPLENDID [7],
implement adaptivity and mitigate in some way, the impact of these problems.
FedX and SPLENDID, the adaptivity granularity is coarse-grained, supporting
the generation of fixed logical query plans according to the available endpoints.
In addition, ANAPSID implements a fine-grained granularity adaptivity, and
provides an intra-operator strategy and non-blocking operators. Thus, ANAP-
SID detects when SPARQL endpoints become unavailable, and opportunistically
produces results as quickly as data arrives from the endpoints. Although these
adaptive query processing techniques may empower SPARQL endpoints, because
the optimize-then-execute paradigm is followed, completeness of the query results
or query execution efficiency is not always achieved. Contrary, our network of
Linked Data Eddies implements routing operator strategies able to change the
logical query plan according to the conditions of the RDF data sources.

Hartig et al. [8] propose a Linked Data traversal approach and provide an
inter-operator approach where source selection and link traversal are interleaved
during query execution time. A non-blocking iterator model that relies on an
asynchronous pipeline of iterators is used for traversing relevant links. Iterators
are executed in an order heuristically determined, e.g., the most selective itera-
tors are executed first. Further, the query engine is able to adapt the execution
to source availability by on-the-fly detecting whenever an HTTP server stops
responding. This approach adapts execution schedulers to uncontrollable net-
work conditions; nevertheless, in presence of arbitrary data distributions, plans
cannot be adapted and performance may be negatively impacted.

Finally, Verborgh et al. [15] propose a novel HTTP interface to access RDF
data that rely on Linked Data Fragments (LDF) which can be easily generated
by RDF data providers. Verborgh et al. also present a client-side Web query
processing strategy for Linked Data Fragments of triple patterns (TPFs). This
client-side query engine enhances Web clients with the capability of executing
SPARQL queries and implements the non-blocking iterator model proposed by
Hartig et al. [8] to adapt the query execution scheduler to different cardinal-
ity distribution of the retrieved TPF servers. Adaptivity is implemented at the
level of TPF pages by interleaving TPF server selection with TPF requests to
ensure thus that requests of more selective pages are executed first. Although
TPF clients may effectively adapt query schedulers to TPFs with arbitrary data
distributions, data transfer delays can negatively impact their performance. In
contrast, the nLDE engine relies on both metadata provided by TPFs and novel
routing techniques to identify efficient query plans that reduce execution time
and number of requests. Therefore, the nLDE engine dynamically adapts execu-
tion schedulers to changing conditions of the TPF servers.

6 Conclusions and Future Work

We have defined the nLDE engine, a client-side query processing engine that
builds a network of Linked Data Eddies to efficiently access TPF servers. The



nLDE engine implements adaptivity at intra-operator levels as well as routing
strategies that allow for the adaptation of execution schedulers to real-world
conditions. Reported experimental results suggest that the nLDE engine is able
to generate plans that not only increase the number of answers produced, but
also reduce execution time and number of server requests. Moreover, in presence
of unexpected data transfer delays, the nLDE engine is able to route intermediate
results according to data availability and produce answers as soon as they are
retreived from the servers. In the future, we plan to define different routing
policies and cost models that better estimate selectivity of TPFs.
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