
Opportunistic Linked Data Querying through
Approximate Membership Metadata?

Miel Vander Sande, Ruben Verborgh, Joachim Van Herwegen,
Erik Mannens, and Rik Van de Walle

Multimedia Lab – Ghent University – iMinds
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

miel.vandersande@ugent.be

Abstract. Between uri dereferencing and the sparql protocol lies a largely
unexplored axis of possible interfaces to LinkedData, eachwith its own combination
of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows
clients to execute sparql queries against low-cost servers, at the cost of higher
bandwidth. Increasing a client’s efficiency means lowering the number of requests,
which can among others be achieved through additional metadata in responses.
We noted that typical sparql query evaluations against Triple Pattern Fragments
require a significant portion of membership subqueries, which check the presence
of a specific triple, rather than a variable pattern. This paper studies the impact
of providing approximate membership functions, i.e., Bloom filters and Golomb-
coded sets, as extra metadata. In addition to reducing http requests, such functions
allow to achieve full result recall earlier when temporarily allowing lower precision.
Half of the tested queries from aWatDiv benchmark test set could be executed with
up to a third fewer http requests with only marginally higher server cost. Query
times, however, did not improve, likely due to slower metadata generation and
transfer. This indicates that approximate membership functions can partly improve
the client-side query process with minimal impact on the server and its interface.

Keywords: Linked Data, querying, availability, scalability, sparql

1 Introduction

For a long period of time, querying Linked Data has been a story of two extremes, with
Linked Data documents on the one side and the sparql protocol on the other. Currently,
neither of them is able to drive real-world applications on the Web. On the one hand,
public sparql endpoints are limited in number and suffer from frequent downtime [4,22].
Their resource consumption is hard to predict, caused by the expressiveness of the
language and individual user demand. This downtime results in insufficient reliability for
client applications. Linked Data documents, on the other hand, are more predictable, but
link-traversal-based query methods are significantly slower and result sets have varying
levels of completeness, both of which are undesired traits for user applications. The
issues with these two query solutions hint at a need for other client/server trade-offs.

? For Johan De Smedt. Thanks to Daniel P. Miranker for his suggestions on Bloom filters.



2 Miel Vander Sande et al.

Linked Data Fragments (ldf) [25] aim to analyse such trade-offs by proposing an
uniform view on all interfaces to rdf. This reveals a complete spectrum between Linked
Data documents and the sparql protocol, in which the state-of-the-art of Linked Data
publishing can be advanced. This axis can be explored in the following two dimensions.
– Selector: allowing different, more complex questions for the server
– Metadata: extending the response with more information clients can use
In prior work, Triple Pattern Fragments (tpf) [25] were introduced as an alternative

api with low-server cost. This interface offers a single triple pattern as selector and
includes an estimated number of total matching triples as metadata. sparql queries can
be evaluated client-side by combining several tpfs, using the metadata for optimization.
Higher query execution time and more bandwidth are accepted in exchange for a small
load on the server, thereby striking a more sustainable load balance between client and
server. Recently, an algorithm that reduces bandwidth was proposed within the same
server restrictions [23]. Another direction for improvement is to have servers support
other features along the selector and/or metadata dimensions in addition to tpf.

In this paper, we explore the metadata dimension by adding approximate membership
functions (amf) as a composable feature for Linked Data Fragments apis. An amf is a
space-efficient data structure that is able to indicate whether a set contains an item. False
positives can occur with a fixed probability, but false negatives can not. This work studies
their applicability as a server-side feature in addition to tpf, in order to reduce the number
of http requests during client-side sparql query execution. We study two different amf
techniques: Bloom filters [3] and Golomb-Coded Sets (gcs) [19]. Concretely, we present
i) an in-depth comparison between different client-side algorithms with or without Bloom
and gcs; ii) a vocabulary to describe approximate membership functions as metadata for
self-descriptive apis; iii) an evaluation of opportunistic querying, where we strive for
result completeness first and validate their correctness later.

First, we present the preliminary concepts and related work in Section 2. Then, we
discuss the motivation, research questions and hypotheses for this work in Section 3.
Next, Section 4 shows how the tpf interface is extended with amf metadata. After that,
we demonstrate how the client benefits from this in Section 5, and how it enables a more
opportunistic form of querying in Section 6. Finally, we evaluate the query algorithms
with and without amf metadata in Section 7, and conclude in Section 8.

2 Core concepts and related work

2.1 sparql query evaluation using traditional Web apis

Linked Data can be published on the Web using different apis, of which data dumps
and sparql endpoints are highly common [5]. The Linked Data Fragments conceptual
framework [25] enables the analysis and comparison of Web apis by abstracting each api
according to how it provides access to parts of a certain dataset. Each such part is called
a Linked Data Fragment (ldf), which consists of data, metadata, and controls. The data
is a set of those triples of the dataset that match a given interface-dependent selector.
The metadata set consists of triples that describe the dataset and/or the current fragment
or related fragments. Finally, the controls are hypermedia links and/or forms that allow
clients to retrieve other fragments of the same or other datasets.



Opportunistic Linked Data Querying 3

Both data dumps and sparql endpoint responses can be considered ldfs. A data
dump of a dataset employs all triples in that dataset, usually in a compressed archive,
as the data. The metadata set contains data such as publication date and/or license. No
controls are present, because all available data is contained within the archive. The main
drawback of dumps that they cannot be queried “live”: they need to be downloaded in
their entirety to evaluate queries.

The sparql protocol [6] exposes rdf graphs on the Web using the sparql query
language [10]. Each response to a CONSTRUCT or DESCRIBE query can be seen as an ldf,
where the data consists of the rdf triples in the dataset that match the query. The metadata
and control sets are empty; controls are implicitly in the sparql protocol. An advantage
of sparql endpoints is their expressiveness: clients can ask very specific questions about
a dataset. However, public sparql endpoints suffer from a two-sided availability problem:
the majority of datasets is not published as a sparql endpoint (543 opposed to 9960
datasets)1, and endpoints that are on the Web experience frequent downtime [4].

2.2 sparql query evaluation using a Triple Pattern Fragments api

In addition to describing existing interfaces, ldf also allows defining new interfaces with
different characteristics. The Triple Pattern Fragments (tpf) interface [24, 25] combines
the desirable characteristics of data dumps (low server-side cost) and sparql endpoints
(live queryable). Clients can ask a server for triple patterns; in response, the server sends
a tpf, consisting of the triples of the dataset matching the triple pattern (paged to keep
the fragment size reasonably small), metadata expressing the total number of matching
triples, and controls to retrieve all other tpfs of the same dataset. Complex sparql queries
are evaluated by clients, which split a query into triple patterns and use the metadata in
fragments to determine an efficient execution order. The advantage of tpfs is that they
only require low processing power on the server side, and are thus less expensive to host
with high availability [25]. The drawback is that sparql queries have longer query times
than on a sparql endpoint. More than 600,000 crawled rdf files are available as tpfs
through the lod Laundromat [21]. dbpedia, arguably the most well-known dataset on the
Semantic Web, has an official tpf interface with 99.999% availability [26].

tpfs move the query planning problem to the client. It is up to the client to make
optimal use of metadata exposed by the server. The originally proposed query planning
algorithm is greedy [25]. Assuming a Basic Graph Pattern (bgp) query, the client
downloads results for the triple pattern with the lowest cardinality, based on the count
metadata. Possible mappings for each resulting triple are bound to each remaining pattern,
of which the one with lowest cardinality is subsequently requested from the server.

Van Herwegen et al. improve the greedy algorithm [23], aiming to minimize the
number of http calls by making global instead of local decisions. This is achieved
by downloading two triple patterns separately in case this requires fewer http calls.
Multiple estimation techniques, based on the intermediate results of the algorithm, are
used to predict which query path is least expensive. If the current path is suboptimal, the
algorithm continues from the new path. This decrease in http requests results, however,
in more computational work for the client because of the more complex join process.

1 http://stats.lod2.eu

http://stats.lod2.eu


4 Miel Vander Sande et al.

This paper seeks to provide an optimized balance between server-side cost and query
execution time by extending the tpf interface with additional metadata, as we will discuss
in Sections 4 to 6. The goal is to maintain a low per-request cost for the server, while
reducing the number of requests clients need to execute to evaluate typical queries.

2.3 Approximate membership techniques

In the following, we summarize the Approximate Membership Function (amf) families of
Bloom filters and Golomb-Coded Sets. Both offer approximate membership assessment
with a predefined false positive probability, but with different size and speed. Recall and
precision are important parameters of an amf f . Given the set of actual members M
and a set of elements T for which we want to test membership, the set of positively
tested elements PT = {t ∈ T : f (t) = true}. We define recall f (T ) = |M∩PT |/|M| and
precision f (T ) = |M∩PT |/|PT |. Both Bloom filters and Golomb-Coded Sets have 100%
recall, i.e., all valid members of M will always be identified, but less than 100% precision.

Bloom filters A Bloom filter [3] is a bitmap of m bits populated using k different hash
functions, initialized with all bits set to 0. An item is added by calculating k locations in
the bitmap, which are set to 1. Each one is calculated by using a different hash function
to ensure randomness. An item can be tested by calculating k locations using the same
hash functions. Hence, both insertion and testing are O(k). The result of a bit-wise AND
of those locations in the filter determines if the item is a member. If false, the item is
definitely not in the set. If true, the item might be in the set, because of false positives.

For a desired false positive probability rate p, the bit-size of a Bloom filter is
proportional to its number of members n. The required size is m = −n · log2 e · log2 p.
For a given m, the optimal number of hashes k that minimizes false positive probability
can be calculated with k = m/n · ln2. Despite their compact representation, their size can
be too large for network transfer. A solution is using compressed Bloom filters [15], at
the cost of compression and decompression delays.

Golomb-coded sets Golomb-coded sets (gcs) [19] provide a cleaner variation of
compressedBloomfilters. The outputs of a single hash function are considered a uniformly
distributed list of values instead of a bitmap. The differences between all values form
a geometrically distribution with a parameter p. Golomb-coding is applied since it is an
optimal encoding for discrete geometric distributions [8].

In terms of size, gcs approaches the theoretical minimum of m =−n · log2 p more
closely than the equivalent Bloom filter. Compared to compressed Bloom filters, gcs
have a minimal size overhead for the same p, but they are more easily chunked and
indexed to deal with uncompressed size issues. Compared to plain Bloom filters, the
query time is magnitudes slower due to decompression. However, this drawback can be
minimized by including an index to quickly find areas of interest in the filter.

2.4 Query evaluation with approximate membership

In the context of rdf querying, approximate membership functions are included in
several related works, covering i) query routing in networks, ii) selectivity estimation for
optimizing joins, iii) evolutionary querying, and iv) local database indexes.



Opportunistic Linked Data Querying 5

Query routing applies Bloomfilters in caches and indexes for peer-to-peer,MapReduce
or cloud clusters, and Linked Data networks. Most systems [7, 14, 20] construct a data
summary of neighboring nodes or clusters to make a query forwarding decisions. Some
algorithms exchange these filters between nodes to maintain their network [11]. This is
common in combination with Distributed Hash Tables (dht) [11, 27], where a dht is
used for data routing and Bloom filters for efficient communication between nodes.

More directly applicable is selectivity estimation of query patterns, e.g., graph patterns,
to improve join performance. One approach is to group different chain-patterns, i.e. two
distinct triple patterns connected by a single variable, according to their frequency [13].
A Bloom filter tests in what frequency group a chain pattern resides, which optimizes the
pattern execution order. Other applications include representing equivalent classes to
optimize hash joins, ranges of values for merge joins [16], and distributed n-way joins [2].
Although these works inspire future directions, many require more than a single triple
pattern and have high demands for the server. Highly relevant is the proposal to extend
the ask query response [12] with combinations of bindings, i.e. two variables in a triple
pattern, to improve source selection in sparql query federation frameworks. Bloom
filters from different sources indicate overlap and save redundant requests. However, the
benefit in a single-server setup is unclear.

Evolutionary querying is an alternative way of sparql query processing. Possible
solutions are first guessed, and then incrementally refined. Oren et al. use a combination
of fingerprinting and Bloom filters to rapidly evaluate approximate answers against large
rdf datasets [17]. Although this is a centralized solution, it advocates anytime answers,
which is in line with the opportunistic querying presented in this paper. The algorithm is
initiated with random values, which returns initial results fast, but with low accuracy.

Finally, in the area of databases, Bloom filters are an efficient technique to prevent
unnecessary disk access [18]. In such cases, the size of the filter and its impact on transfer
delays are not applicable.

3 Problem statement

3.1 Analysis of query execution using Triple Pattern Fragments

The required time for a client evaluate certain sparql queries against tpf interfaces can
still be unacceptable for responsive applications. A dominant factor in this time is the
high number of http requests. Therefore, by analyzing the nature of these requests, we
can locate possible areas for changing the client/server trade-offs in the interface. To this
end, we executed sample sparql queries from the WatDiv benchmark [1] against a tpf
interface using the greedy algorithm [25]. WatDiv consists of 20 query templates grouped
in four categories, namely linear (L), star (S), snowflake-shaped (F) and complex (C).2

The execution logs revealed a high number of requests for triple patterns without
variables, i.e. testing the membership of a specific triple in the dataset. The templates L2,
L4, and F3 respectively produced 50%, 51% and 74% membership subqueries. For S5,

2 The 20 WatDiv templates are graphically displayed at http://db.uwaterloo.ca/watdiv/
basic-testing.shtml. Note that the number of templates per category does not necessarily
reflect actual query distributions for specific datasets.

http://db.uwaterloo.ca/watdiv/basic-testing.shtml
http://db.uwaterloo.ca/watdiv/basic-testing.shtml


6 Miel Vander Sande et al.

F5, C1, and C2, this proportion even reached 95% to 98%. Furthermore, the absolute
number of requests of some of these templates is high (e.g., F3 needed 1,335 membership
subqueries). A third of query templates is thus affected; the remaining 13 templates
produced no membership subqueries at all. While these numbers do not allow generalized
conclusions, they are certainly an important indication that a reduction of membership
subqueries can have a considerable influence on the number of http requests—and thus
the overall query execution time.

3.2 Research questions and hypotheses

In the tpf interface, metadata is crucial for clients to evaluate sparql queries efficiently.
By estimating the total number of matches per triple pattern, patterns with higher
selectivity can be followed first [23, 25]. If we augment this metadata, clients might be
able to make more informed decisions and hence reduce the number of membership
subqueries required to evaluate a sparql query, at the cost of higher per-request costs.
This paper studies the impact of adding approximate membership functions to fragments
in order to reduce the amount of http requests. In this regard, we pose the following
research question:
Question 1: To what extent can approximate membership metadata for tpfs reduce the
number of http requests necessary to evaluate sparql queries?
Probabilistic queries also enable new ways of generating results: uncertain results can be
returned early, and validated later on. We investigate this as follows:
Question 2: To what extent can approximate membership metadata for tpfs reduce the
time to achieve complete recall of sparql query results?
Adding such metadata requires amfs to be generated on the server side, the impact of
which should be investigated:
Question 3:What is the overhead of generating approximate membership metadata on
the server cpu load at runtime?
The answers to these questions validate our exploration of the metadata dimension
using amfs. Concretely, we test the following hypotheses about the effectiveness of an
interface I′, which adds an amf feature to the baseline tpf interface I. First, given the
presence of amfs, the client should be able to omit a portion of requests over http, hence:
Hypothesis 1: The number of http requests required to evaluate minimum a third of the
WatDiv queries against I′ can be significantly reduced.
Next, as stated above, the reduction in http requests has a direct impact on the overall
execution time, thus:
Hypothesis 2: The time to achieve complete recall when executing WatDiv queries
against I′ is significantly reduced on average.
Finally, we do not expect much extra load on the server, since an amf using a non-
cryptographic hash function can be computed fast:
Hypothesis 3: The interface I′ increases server cpu usage only slightly compared to I
for the same queries.



Opportunistic Linked Data Querying 7

4 Extending the tpf interface with amf metadata

The tpf interface responds with rdf documents and is self-descriptive [25], meaning
that i) extensions to the tpf interface are features of a composable api, ensuring
backward-compatibility; ii) clients can discover at runtime which features are supported.
Therefore, servers can add an interface feature, e.g., amfs as extra metadata, without any
interference. This section introduces a generic ontology to express membership functions
such as amfs, followed by its implementation as a feature on top of the tpf interface.

We created a membership modeling ontology, which we publish and maintain
at http://semweb.mmlab.be/ns/membership and denote with the prefix ms in the
remainder of this paper. It defines ms:Function for generic functions and its subclasses
ms:ApproximateMembershipFunction and ms:HashFunction. To allow for Bloom filters
and Golomb-coded sets, the former has ms:BloomFilter and ms:GolombCodedSet as
subclasses. Finally, ms:hashFunction associates instances of these classes with hash
functions that can be instances of algorithms such as ms:MD5 or ms:MurmurHash3.

Using this ontology, we define an interface feature that provides amf metadata in the
metadata graph of responses. In regular tpfs, each fragment contains a void:triples
statement expressing the approximate total number of triples in the dataset that
match the tpf’s triple pattern [24]. For instance, each page of the tpf for the pattern
“?x rdf:type foaf:Person” contains a metadata triple stating there are 96,300 match-
ing triples in the dataset. Given a page size of 100 data triples, these data triples would
be spread across 963 pages. Suppose that during the execution of a certain sparql query,
the client arrives at a list of 215 potential mappings for “?x rdf:type foaf:Person”.
In order to verify with a minimum number of http requests whether these mappings are
valid, the 215 tpfs for the corresponding triples need to be downloaded, checking which
mappings result in a triple that exists within the dataset.

By defining an interface feature that allows this fragment to contain an amf, the
clients can determine approximately whether a certain ?x results in a triple of the dataset.
Listing 1 shows an example amf for the triple pattern “?x rdf:type foaf:Person”. In
this case, it is a Bloom filter with two specific Murmur functions as hash functions.
The hash functions themselves are not detailed in the listing, but their parameters
need to be explicitly available (either in the response or by dereferencing their url).
Listing 1 explicitly specifies that the members of the collection are the triples of the
fragment, and that the amf has been built by using the subject of these triples. This
allows the client to interpret how exactly this amf can be used. For instance, if the triple
dbp:Elvis_Presley rdf:type dbo:Artist is part of the dataset, then the full uri of
dbp:Elvis_Presley must yield a positive value in the membership function. Note that
the false positive rate is also specified, allowing a client to estimate the certainty of each
result. Finally, the amf data itself has been made available in base64-encoded form.

This metadata allows a client to unambiguously recreate the amf and verify the
approximate membership of elements. Note that this self-descriptive approach does not
require a contract between the client and the server, e.g., no hash function has to be
agreed upon silently. Furthermore, clients that do not use this metadata feature, such as
the original tpf client [25], will not be affected by it and can thus continue to use the
interface. It is up to the server’s discretion whether or not to provide an amf on a page. If
it is present, an amf-aware client can use it; if not, the original algorithm without amfs

http://semweb.mmlab.be/ns/membership


8 Miel Vander Sande et al.

<#metadata> foaf:primaryTopic <#fragment>.

<#metadata> {

<#fragment> void:triples 96300. # existing count metadata
_:membershipFunction a ms:BloomFilter; # AMF metadata

ms:hashSize 524288;

ms:hashFunction <MyMurmur1>, <MyMurmur2>;

ms:memberCollection [

ms:sourceCollection <#fragment>;

ms:projectedProperty rdf:subject

];

ms:falsePositiveRate 0.05;

ms:falseNegativeRate 0.0;

ms:binaryRepresentation "QmF...ZTY"^^xsd:base64Binary.

}

Listing 1. The self-descriptive amf metadata in the tpf fragment for ?x rdf:type foaf:Person

allows the client to interpret and evaluate approximate membership.

can be followed. This lets the server choose freely what metadata to include—based on,
for instance, the computational effort to create the amf.

To facilitate implementation, the amf interface feature is the subject of a specification
in the Hydra w3c Community Group, which is available at http://www.hydra-cg.com/
spec/latest/linked-data-fragments/membership-metadata/.

5 sparql query execution with amf-enabled tpfs

In order to explain the algorithm to query tpfs with amf metadata, we will consider the
following example query for dbpedia:

SELECT ?p ?c WHERE {

?p a <http://dbpedia.org/ontology/Artist>. # tp1
?p <http://dbpedia.org/ontology/birthPlace> ?c. # tp2
?c <http://www.w3.org/2000/01/rdf-schema#label> "York"@en. # tp3

}
Query 1. This sparql query finds artists born in cities named “York”.

Given a regular tpf interface, the algorithms presented in Section 2.2 will compute
results for each bgp B by recursively evaluating and binding each triple pattern tpi ∈ B in
an order determined by the count metadata in their respective fragments. For example,
by fetching the first page of the tpfs for Query 1 where B = {tp1, tp2, tp3}, we obtain
the count metadata {(tp1,96300),(tp2,625811),(tp3,2)}. Therefore, we start iterating
over tp3, which will supply values for ?c. This leads to 2 subqueries B′ = {tp1, tp

′
2}

where the remaining triple patterns are bound to concrete values of ?c (note that tp1 is
unaffected because it does not contain ?c). For instance, for ?c = dbp:York, we obtain
count metadata {(tp1,96300),(tp′2,207)}. Query execution thus continues with the
smallest fragment tp′2, which results in 207 subqueries B′′ = {tp′1} in which tp1 is bound

http://www.hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/
http://www.hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/


Opportunistic Linked Data Querying 9

GET ?c rdfs:label "York" (2)

GET ?p dbo:birthPlace
dbp:Category:York (0)

GET ?p dbo:birthPlace
dbp:York (207)

GET dbp:Adam_Thomas
a dbo:Artist (1)

GET dbp:Barry_Tait
a dbo:Artist (0)

GET dbp:Caroline_Hill
a dbo:Artist (0)

GET dbp:Dustin_Gee
a dbo:Artist (1)

. . .

each of the 3 levels represents
(states of) a TriplePatternIterator

evaluate using amf from
GET ?p a dbo:Artist

Fig. 1. The triple patterns of Query 1 with the least number of matches at each stage become
nodes in the evaluation tree. Note how the third level of consists entirely of membership subqueries
(single triples), and can thus be evaluated with the help of an amf.

to possible values of ?p. These 207 subqueries are indeed membership queries, because
they check the presence of a concrete triple without variables, e.g., “dbp:Adam_Thomas
rdf:type dbo:Artist”. All values of ?p that result in a match are solution mappings to
the query. This process leads to an evaluation tree, as shown in Fig. 1.

An efficient way to realize such evaluation trees are iterator pipelines [9], which allow
for incremental query results. In existing tpf algorithms [23, 25], two principal iterator
types are responsible for sparql query evaluation over tpfs: a TriplePatternIterator
for triple patterns and a GraphPatternIterator for bgps. The whole of Fig. 1 is executed
by a GraphPatternIterator, which chains together TriplePatternIterators for each
of the three levels in the tree. Each TriplePatternIterator reads solution mappings
from the iterator above it and tries to extend them with mappings for a given triple pattern.
For instance, the iterator at level 2 with pattern “?p dbo:birthPlace ?c” receives
mappings for ?c from the iterator at level 1. For each ?c, it tries to find mappings for ?p,
which are then passed on to level 3. Finally, the TriplePatternIterator on level 3 with
pattern “?p rdf:type dbo:Artist” either confirms or rejects mappings depending on
whether the triple for a given ?p exists. This produces a total of 207 requests, which
amount to 98% of the total http traffic.

Algorithm 1 presents an extension of the original TriplePatternIterator [25] to
make use of amf metadata. When a TriplePatternIterator is initiated, the correspond-
ing tpf for its initial triple pattern is requested (line 2). This fragment typically already
resides in the client cache, since it was formerly requested by a GraphPatternIterator
for count metadata. If the response contains amf metadata, a membership test function is
created and assigned to the iterator (line 4). In our example, this translates to a request for
the tpf for “?p rdf:type dbo:Artist”, which contains an amf for all mappings of ?p.
If no amf metadata is found, we assign a constant function True that always returns true
(possible match), so that a verification request is always necessary.

When GetNext is called, the TriplePatternIterator first reads an upstream map-
ping µs from its source iterator Is (line 14). Then, we test whether the triple (pattern) tp′

resulting from this mapping is present in the current amf. If the test returns true, we have
a true positive or false positive, so the tpf corresponding to tp′ is fetched and assigned to
the iterator. For instance, if the mapping {?p = Adam_Thomas} returns true, we retrieve
the tpf for “dbp:Adam_Thomas rdf:type dbo:Artist” to verify whether this triple is
a true or false positive. If the test returns false, tp′ is a true negative and need not be



10 Miel Vander Sande et al.

1 Function TriplePatternIterator.Init()
Data: A source iterator self.Is; A triple pattern self.tp

2 ftp← GET tpf for self.tp;
3 if ftp contains amf metadata then
4 self.membership_test← ftp.metadata.amf;
5 else
6 self.membership_test← True where ∀x : True(x) = true;
7 end
8 self.current_fragment← /0;
9 end
10 Function TriplePatternIterator.GetNext()

Output: The next mapping µn or nil when no such mappings are left
11 µ ← nil;
12 while µ = nil do
13 while self.current_fragment does not contain unread triples do
14 self.µs← self.Is.GetNext();
15 return nil if self.µs = nil;
16 tp′← self.µs[self.tp];
17 if self.membership_test(tp′) = true then
18 self.current_fragment← GET tpf for tp′;
19 end
20 end
21 t← an unread data triple from self.current_fragment;
22 µ ← a mapping µ ′ with dom(µ ′) = vars(self.tp) and µ ′[self.tp] = t;
23 end
24 return µ ∪self.µs;
25 end

Algorithm 1. A TriplePatternIterator with support for amf metadata

checked. For instance, if the mapping {?p = Barry_Tait} returns false, we are sure
the corresponding tpf is empty, so we do not need to perform the http request.

For each negative amf result, this proposed extension of the algorithm saves an http
request. Depending on the type of query, cumulative savings can be extensive, as with
Query 1. The positive results, however, still need to be verified in case false positives
would have occurred. While we cannot eliminate the verification http calls without
endangering the correctness (precision) of query results, it is possible to further reduce
the query time, as we will discuss in the next section.

6 Opportunistic query results

In general, query execution does not necessarily end when all valid results have been
obtained; it could be that the engine still spends some time to rule out possible result
candidates before being able to decide that the result set is in fact complete. Due to the
approximate nature of amfs, it is possible that at a certain point during Algorithm 1,
the in-memory result set R already contains all r valid results. However, they cannot be
returned yet, because R can still contain a number of false positives f . Only after the



Opportunistic Linked Data Querying 11

only allow
certain results

temporarily allow
uncertain results

start
execution

start
execution

1st result
computed

1st result
computed

n < r results
computed

n < r results
computed

r results
computed

r results
computed

r+ f results
computed

0% recall 100% recall 100% recall
100% precision

Fig. 2. This sparql query execution timeline compares regular and opportunistic query execution,
assuming r total query results and f false positives. Note how both approaches achieve 100% recall
and precision at a shared point in the end, but there exists a period during which only opportunistic
execution reaches 100% recall (shaded).

membership of all positive results of the amf has been verified against the tpf interface,
the f false positives can be discarded and all r matches can be returned safely.

For some use cases, it might be acceptable to temporarily consider incorrect results,
especially if we are able to indicate which results can be trusted and which results cannot.
If at first, we optimistically assume that all positive matches of the amf are actual matches
(i.e., we disregard the false positive rate), the client is able to reach 100% recall earlier,
temporarily tolerating a precision below 100%. For each of those approximate matches,
the client can express the probability that it is valid, namely 1− p with p the false-positive
rate of the amf. As membership subqueries progress, the client can update the probability
for true positives from 1− p to 1, and retract false positives by setting their probability
to 0. This opportunistic method of providing query results is important if fast results and
eventual full precision are preferred over slower results with immediate precision. At no
point in time, incorrect query results are presented as correct results of the query.

Fig. 2 compares regular querying and opportunistic querying. Note in particular how
both approaches eventually reach 100% recall and precision at the same time. In other
words, even though the opportunistic algorithm temporarily allows uncertain results
and thus a precision of less than 100%, the application eventually obtains the accurate
result set. Also, the application that receives the result knows at each moment in time
whether a result is certain or not, and can thus decide to either use it or not.

As an example, consider an application that displays photos of artists based on the
results a certain sparql query. After a few http calls, the query client returns 50 matches,
all of which have a probability of 99%. The application can decide to already start
downloading photos of the 50 matching artists, without displaying them to the user yet.
Once 48 of the 50 matches are confirmed, the 48 photos can be displayed immediately;
only 2 photos need to be discarded. The user thus sees the photos faster than if they
had only been retrieved after full precision was achieved. This example indicates that
opportunistic query answering has direct concrete uses in Web applications.

7 Evaluation

In the following, we discuss our evaluation of executing sparql queries against tpf
interfaces with an amf feature. From these experiments, we aim to assess whether amfs
are a valuable asset in the metadata dimension. We first describe the experiments and
their setup. Then, we discuss their results to validate the three hypotheses of Section 3.2.



12 Miel Vander Sande et al.

7.1 Experimental setup

We extended the existing implementations of the tpf client3 and server4 to support both
Bloom filters and Golomb-coded sets. The server is configured by specifying the amf and
the desired false positive probability. We chose the 32-bit MurMurHash3 hash function
for gcs and fnv-1 for the Bloom filter. The server calculates a membership function on
the fly for each request for a triple pattern with a single variable.

We ran the experiments with different false positive probabilities p: 1/1024≈ 0.1%,
1/128≈ 1%, and 1/64≈ 1.6%. In each experiment, we executed 250 queries generated
from 125 diverse WatDiv sparql templates on three interfaces: i) regular tpf interface
ii) tpf with Bloom filters, and iii) tpf with gcs. All three cases were tested with both
the original and the optimized client; the last two setups were tested with and without
opportunistic querying. All experiments were run on a single Amazon ec2 machine
with an 8-core Intel Xeon e2680 v2 cpu and 15gb ddr3 ram, using a query timeout of
3 minutes and the WatDiv 100M triples dataset from [1]. The http requests were routed
through an nginx cache instance to enable http caching and to enforce a realistic Web
bandwidth of 1Mbps per request. We published the full result logs online.5

7.2 http requests

Tables 1 to 4 summarize the results of the experiments. They compare each amf-enabled
setup against a regular tpf client/server setup, grouping each of the 250 queries on
whether they resulted in an equal, lower, or highermeasurement for i) number of requests,
ii) time to first result, iii) time to 100% recall (i.e., with opportunistic querying enabled),
and iv) total query execution time. The number of queries per group is indicated, together
with their average measurement value in the regular setup, and the average decrease or
increase in respectively the lower and higher groups. For example, the top-left value
cell of Table 1 shows that, for Bloom filters with p = 1/1024, 126 queries had a lower
number of http requests; for each of these 126 queries, the regular setup needed on
average 45,213 requests, whereas the amf-enabled setup required 15,217 fewer requests.

Our experiments show that, with p = 1/1024, amf metadata decreases the number of
http calls for roughly half of all considered queries (Bloom: 126 queries or 50.4%; gcs:
123 queries or 49.2%). As expected from the analysis in Section 3, those queries that
benefit from improvements are queries with relatively many http requests: the average
number of requests per query in the lower group is 45,213 (gcs: 45,598), compared to
2,953 (gcs: 2,271) for queries that do not improve. The improvements let us conclude that
a substantial number of these 45,000+ requests per query were membership subqueries;
the amf-based query algorithmmanages to decrease their number by 15,217 (gcs: 11,761)
on average. 43 queries (gcs: 43) result in a slightly higher number of requests, albeit
negligible compared to the total number: 10 versus 24,312 (gcs: 18 / 26,919). Note that
in general, the number of requests per query is very high because of the potentially high
number of results in the WatDiv dataset. While numbers of this scale clearly highlight
query patterns, many real-world queries can be evaluated with tighter constraints.

3 https://github.com/LinkedDataFragments/Client.js/tree/amq

4 https://github.com/LinkedDataFragments/Server.js/tree/amq

5 https://github.com/LinkedDataFragments/TPF-Membership-Metadata-Results

https://github.com/LinkedDataFragments/Client.js/tree/amq
https://github.com/LinkedDataFragments/Server.js/tree/amq
https://github.com/LinkedDataFragments/TPF-Membership-Metadata-Results


Opportunistic Linked Data Querying 13

metric # requests 1st result time (s) 100% recall time (s) total time (s)
queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 81 qrs. 126 qrs. 43 qrs. 177 qrs. 0 qrs. 73 qrs. 152 qrs. 3 qrs. 95 qrs. 154 qrs. 1 qry. 95 qrs.
orig. group avg. 2,953 45,213 24,312 1 – 7 96 134 67 96 42 67
avg. difference –15,217 +10 – +6 –41 +23 –32 +22
p=1/128 79 qrs. 134 qrs. 37 qrs. 173 qrs. 0 qrs. 77 qrs. 150 qrs. 3 qrs. 97 qrs. 153 qrs. 1 qry. 96 qrs.
orig. group avg. 1,469 44,712 23,623 0 – 7 97 134 66 98 42 66
avg. difference –14,210 +5 – +5 –28 +24 –32 +23
p=1/64 80 qrs. 129 qrs. 41 qrs. 174 qrs. 0 qrs. 76 qrs. 152 qrs. 3 qrs. 95 qrs. 156 qrs. 1 qry. 93 qrs.
orig. group avg. 2,340 44,842 24,626 1 – 7 96 134 66 97 42 66
avg. difference –13,341 +15 – +4 –41 +21 –33 +21

Table 1. Comparison of regular tpf versus tpf with Bloom filter setup (greedy tpf algorithm)

metric # requests 1st result time (s) 100% recall time (s) total time (s)
queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 83 qrs. 123 qrs. 44 qrs. 195 qrs. 0 qrs. 55 qrs. 160 qrs. 0 qrs. 90 qrs. 167 qrs. 0 qrs. 83 qrs.
orig. group avg. 2,271 45,598 26,919 1 – 10 94 – 70 91 – 72
avg. difference –11,761 +18 – +8 – +15 – +16
p=1/128 83 qrs. 132 qrs. 35 qrs. 196 qrs. 0 qrs. 54 qrs. 154 qrs. 0 qrs. 96 qrs. 153 qrs. 0 qrs. 97 qrs.
orig. group avg. 2,152 45,924 21,168 1 – 11 96 – 67 98 – 66
avg. difference –11,594 +5 – +8 – +16 – +16
p=1/64 81 qrs. 122 qrs. 47 qrs. 199 qrs. 0 qrs. 51 qrs. 167 qrs. 2 qrs. 81 qrs. 164 qrs. 2 qrs. 84 qrs.
orig. group avg. 2,930 45,032 26,602 1 – 11 91 122 72 93 122 70
avg. difference –10,521 +31 – +7 –3 +13 –3 +12

Table 2. Comparison of regular tpf versus tpf with gcs setup (greedy tpf algorithm)

metric # requests 1st result time (s) 100% recall time (s) total time (s)
queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 82 qrs. 155 qrs. 13 qrs. 166 qrs. 0 qrs. 84 qrs. 200 qrs. 0 qrs. 50 qrs. 173 qrs. 0 qrs. 77 qrs.
orig. group avg. 1,590 18,240 11,387 1 – 5 120 – 71 110 – 69
avg. difference –4,920 +2 – +5 – +21 – +18

Table 3. Comparison of regular tpf versus tpf with Bloom filter setup (optimized tpf algorithm)

metric # requests 1st result time (s) 100% recall time (s) total time (s)
queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 87 qrs. 147 qrs. 16 qrs. 199 qrs. 0 qrs. 51 qrs. 203 qrs. 0 qrs. 47 qrs. 209 qrs. 0 qrs. 41 qrs.
orig. group avg. 2,743 18,326 10,816 1 – 9 120 – 74 114 – 88
avg. difference –1,154 +3 – +5 – +14 – +11

Table 4. Comparison of regular tpf versus tpf with gcs setup (optimized tpf algorithm)

A similar pattern arises with the optimized tpf algorithm [23], which consumes
fewer http requests overall because of full client-side joins, but has potentially longer
query times for the same reason. Even more queries benefit from lower request numbers:
155 (62%) for Bloom and 147 (58.8%) for gcs. We see a reduction of roughly the same
ratio, both with Bloom filters and gcs, although the absolute request numbers are lower.

The observations generalize to the cases for p = 1/128 and p = 1/64, albeit with
slightly different observations. As is expected from a higher number of false positives,
we see a decreasing average gain with increasing p. Interestingly, we see the number of
queries with fewer http requests increase slightly for higher p values; we assume this is
correlated with the smaller response size, which allows for a higher throughput.

The above results confirm a substantial positive impact on the number of http
requests, validating Hypothesis 1.



14 Miel Vander Sande et al.

7.3 Query execution time

In all cases (excluding 1 or 2 exceptions), both the first result times and total query
times remain the same or even increase, contrarily to what we had expected. As Tables 1
and 2 indicate, about one in three queries have their execution time prolonged with about
20 seconds, or a third of their time. This prolongation is higher for Bloom filters than
gcs, which see a more limited effect absolutely (18 seconds) and proportionally (about
a quarter). The cause of these elevated query times is likely the increased response size:
since the server automatically sends amfs for all patterns with one variable (even if the
client does not use the amf), the server-side computation time and client-side retrieval
time increase. Given a connection of 1Mbps and on-the-fly amf generation, as in this
experiment, the decreased number of requests is apparently insufficient for the considered
queries and dataset to result in temporal gains. This is confirmed by the fact that gcs
performs better, as gcs representations are encoded more efficiently.

Interestingly, higher false-positive probabilities do not have a profound effect on query
time. For the given constrains, the higher number of requests seems to be compensated
by the decreased complexity of generating, transferring, and interpreting amfs. This is
an indication that further experimentation with low probabilities might be beneficial.

The prolonged total query time also hinders the effectiveness of opportunistic
querying. Whereas its goal is to achieve full recall earlier—at the expense of temporarily
allowing <100% precision—the slower overall execution prevented a globally positive
result. The potential benefit of opportunistic querying is evidenced by the 3 queries
that, with Bloom filters, achieve 100% recall 41 seconds—about a third—earlier. Since
opportunistic results have no negative influence on query time, the increased recall times
for ±95 queries must be entirely due to the slower speed of the amf approach under the
1Mbps and on-the-fly constraints. Should we succeed in speeding up amf generation
and/or transfer time, we could expect to see a broader influence of opportunistic results.
Furthermore, the number of false positives that needed to be revoked was either 0 or 1
for all of the considered queries, revealing a low temporary impact on precision.

The obtained results for execution time thus invalidate Hypothesis 2, as we were not
able to decrease the time to full recall in general. Further research will need to assess the
relation of this observation to on-the-fly generation and bandwidth, and perhaps also
even higher false positive rates.

7.4 Server impact

Finally, we measured the average cpu load during query execution for two different
amf configurations and two different false positive probabilities. Compared to the
normal server cpu usage (9.2%), the amf configurations show an increase of 1.6%
(p = 1/1024), 2% (p = 1/128) and 5.7% (p = 1/64) for Bloom, and 1% (p = 1/1024),
1.6% (p = 1/128), and 1.9% (p = 1/64) for gcs. This is a very acceptable overhead
which does not impact the server’s low-cost nature. Bloom has a higher impact than
gcs because of the many hashes it needs to calculate, which apparently outweigh the
overhead of Golomb compression. Note that all amf metadata is created at query time
and can still benefit from pre-computation and/or caching. Given the limited increase,
the aforementioned numbers validate Hypothesis 3.



Opportunistic Linked Data Querying 15

8 Conclusions

The Triple Pattern Fragments api enables client-side sparql execution on low-cost
servers, at the cost of higher execution time and bandwidth usage. In this paper, we
studied the effect of incorporating approximate membership metadata as an interface
feature. In particular, we aimed at reducing http requests by avoiding expensive triple
membership checks. We observed that, for one third of a set of diverse query types, most
of the request overhead are in fact membership subqueries. At the expense of one extra
request to fetch the approximate membership metadata, potentially many more could be
saved. Indeed, the experimental results confirm a drastic decrease in requests for half
of the 250 randomly generated WatDiv queries, while others experience little overhead
thanks to local caching. Furthermore, this addition does not affect the low-cost nature of
the server, which only has a limited load increase. However, there is a computational
overhead on the client for queries that are not improved. An intelligent client should
minimize this, by deciding when to use membership metadata based on the query type.

Despite the reduction of requests, the total execution time is higher on average because
of long delays introduced to generate amfs. Therefore, we conclude that this metadata
is not suitable for real-time computation. We therefore recommend to pre-compute
or pre-cache it in advance. A strong benefit of http caching has been proven for tpf
querying [25] due to the limited possible number of requests, and this mechanism can be
applied efficiently to tpfs with augmented metadata. While Bloom filters are preferred
for lower computation time, the smaller size of Golomb-coded sets would prevail in the
presence of caching. To prevent the overhead of generating and transferring amfs, they
could be served in a separate resource that clients explicitly request when needed.

While positive membership tests introduce a slight overhead, this can be compensated
by enabling opportunistic querying. Our results show that retracting results after validation
is rare and only effects a small number of results. Therefore, it makes sense to design
Web applications that can deal with temporarily imprecise results.

A major advantage of adding amf metadata to the tpf interface is that it happens
transparently and in a self-descriptive way. The server can choose freely whether or not
to add metadata to a certain response; clients can reactively use metadata when possible,
or ignore it when they do not support or need it. Where count metadata has proven
crucial for the initial design of tpf querying [25], this first exploration of a new metadata
feature was proven an interesting direction. In the future, we could imagine different such
types of join optimizations, based on optional selectivity information that servers send as
metadata to help clients make intelligent decisions. Studying their impact on real-world
scenarios such as human-crafted knowledge bases can shape further directions.

References

1. Aluç, G., Hartig, O., Özsu,M.T., Daudjee, K.: Diversified stress testing of rdf datamanagement
systems. In: International Semantic Web Conference, pp. 197–212. Springer (2014)

2. Basca, C., Bernstein, A.: Avalanche: Putting the spirit of the Web back into Semantic Web
querying. In: Scalable Semantic Web Knowledge Base Systems. pp. 64–79 (2010)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of
the acm 13(7), 422–426 (Jul 1970)



16 Miel Vander Sande et al.

4. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: sparql Web-querying
infrastructure: Ready for action? In: 12th International Semantic Web Conference (Nov 2013)

5. Ermilov, I., Martin, M., Lehmann, J., Auer, S.: Linked open data statistics: Collection and
exploitation. In: Knowledge Engineering and the Semantic Web, vol. 394, pp. 242–249 (2013)

6. Feigenbaum, L.,Williams, G.T., Clark, K.G., Torres, E.: sparql 1.1 protocol. Recommendation,
w3c (Mar 2013), http://www.w3.org/TR/sparql11-protocol/

7. Filali, I., Bongiovanni, F., Huet, F., Baude, F.: A survey of structured p2p systems for rdf data
storage and retrieval. In: Trans. large-scale data-and knowledge-centered systems (2011)

8. Gallager, R., Van Voorhis, D.C.: Optimal source codes for geometrically distributed integer
alphabets. Transactions on Information Theory 21(2), 228–230 (Mar 1975)

9. Graefe, G.: Query evaluation techniques for large databases. acm Computing Surveys 25(2),
73–169 (Jun 1993)

10. Harris, S., Seaborne, A.: sparql 1.1 query language. Recommendation, w3c (Mar 2013),
http://www.w3.org/TR/sparql11-query/

11. Heine, F.: Scalable p2p based rdf querying. In: Proceedings of the 1st international conference
on Scalable information systems (2006)

12. Hose, K., Schenkel, R.: Towards benefit-based rdf source selection for sparql queries. Proc.
of the 4th International Workshop on Semantic Web Information Management pp. 1–8 (2012)

13. Huang, H., Liu, C.: Estimating selectivity for joined rdf triple patterns. Conference on
Information and Knowledge Management pp. 1435–1444 (2011)

14. Li, J., Vuong, S.: Ontsum: A semantic query routing scheme in p2p networks based on concise
ontology indexing. In: Advanced Information Networking and Applications (May 2007)

15. Mitzenmacher, M.: Compressed Bloom filters. Transactions on Networking 10(5) (2002)
16. Neumann, T., Weikum, G.: Scalable join processing on very large rdf graphs. In: Proceedings

of the International Conference on Management of Data. pp. 627–640. ACM (2009)
17. Oren, E., Guéret, C., Schlobach, S.: Anytime query answering in rdf through evolutionary

algorithms. Lecture Notes in Computer Science 5318, 98–113 (2008)
18. Pu, X., Wang, J., Luo, P., Wang, M.: Aweto: Efficient incremental update and querying in

rdf storage system. In: Proceedings of the 20th international conference on information and
knowledge management. pp. 2445–2448. ACM (2011)

19. Putze, F., Sanders, P., Singler, J.: Cache-, hash-, and space-efficient Bloom filters. Journal of
Experimental Algorithmics 14, 4 (2009)

20. Ravindra, P., Hong, S., Kim, H., Anyanwu, K.: Efficient processing of rdf graph pattern
matching on MapReduce platforms. In: Proceedings of the 2nd International Workshop on
Data Intensive Computing in the Clouds. pp. 13–20 (2011)

21. Rietveld, L., Verborgh, R., Beek, W., Vander Sande, M., Schlobach, S.: Linked data-as-a-
service: The semantic web redeployed. In: 12th Extended Semantic Web Conference (2015)

22. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in
different topical domains. In: International Semantic Web Conference, pp. 245–260 (2014)

23. Van Herwegen, J., Verborgh, R., Mannens, E., Van de Walle, R.: Query execution optimization
for clients of Triple Pattern Fragments. In: Extended Semantic Web Conference (Jun 2015)

24. Verborgh, R.: Triple Pattern Fragments. Unofficial draft, Hydra w3c Community Group,
http://www.hydra-cg.com/spec/latest/triple-pattern-fragments/

25. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Vander Sande, M.,
Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying datasets on the Web with
high availability. In: 13th International Semantic Web Conference (Oct 2014)

26. Verborgh, R., Mannens, E., Van de Walle, R.: Initial usage analysis of dbpedia’s triple pattern
fragments. In: Proc. of the 5th Workshop on Usage Analysis and the Web of Data (2015)

27. Zhang, X., Chen, L., Wang, M.: Towards efficient join processing over large rdf graph using
MapReduce. In: Scientific and Statistical Database Management. pp. 250–259 (2012)

http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-query/
http://www.hydra-cg.com/spec/latest/triple-pattern-fragments/

	Opportunistic Linked Data Querying through Approximate Membership Metadata

