
FEASIBLE: A Featured-Based SPARQL Benchmark
Generation Framework

Muhammad Saleem1, Qaiser Mehmood2, and Axel-Cyrille Ngonga Ngomo1

1 Universität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
{lastname}@informatik.uni-leipzig.de

2 Insight Center for Data Analytics, National University of Ireland, Galway
qaiser.mehmood@insight-centre.org

Abstract. Benchmarking is indispensable when aiming to assess technologies
with respect to their suitability for given tasks. While several benchmarks and
benchmark generation frameworks have been developed to evaluate triple stores,
they mostly provide a one-fits-all solution to the benchmarking problem. This
approach to benchmarking is however unsuitable to evaluate the performance of a
triple store for a given application with particular requirements. We address this
drawback by presenting FEASIBLE, an automatic approach for the generation
of benchmarks out of the query history of applications, i.e., query logs. The
generation is achieved by selecting prototypical queries of a user-defined size
from the input set of queries. We evaluate our approach on two query logs and
show that the benchmarks it generates are accurate approximations of the input
query logs. Moreover, we compare four different triple stores with benchmarks
generated using our approach and show that they behave differently based on
the data they contain and the types of queries posed. Our results suggest that
FEASIBLE generates better sample queries than the state of the art. In addition,
the better query selection and the larger set of query types used lead to triple store
rankings which partly differ from the rankings generated by previous works.

1 Introduction

Triple stores are the data backbone of many Linked Data applications [9]. The perfor-
mance of triple stores is hence of central importance for Linked-Data-based software
ranging from real-time applications [8,13] to on-the-fly data integration frameworks
[1,15,18]. Several benchmarks (e.g., [2,4,7,9,16,17]) for assessing the performance of
the triple stores have been proposed. However, many of them (e.g., [2,4,7,17]) rely on
synthetic data or on synthetic queries. The main advantage of such synthetic benchmarks
is that they commonly rely on data generators that can produce benchmarks of different
data sizes and thus allow to test the scalability of triple stores. However, they often fail
to reflect reality. In particular, previous works [5] point out that artificial benchmarks are
typically highly structured while real Linked Data sources are most commonly weakly
structured. Moreover, synthetic queries most commonly fail to reflect the characteristics
of the real queries sent to applications [3,11]. Thus, synthetic benchmark results are
rarely sufficient to detect the most suitable triple store for a particular real application.
The DBpedia SPARQL Benchmark (DBPSB) [9] addresses a portion of these draw-
backs by evaluating the performance of triple stores based on real DBpedia query logs.

The main drawback of this benchmark is however that it does not consider important
data-driven and structural query features (e.g., number of join vertices, triple patterns
selectivities or query execution times etc.) which greatly affect the performance of
triple stores [2,6] during the query selection process. Furthermore, it only considers
SELECT queries. The other three basic SPARQL query forms, i.e., ASK, CONSTRUCT,
and DESCRIBE are not included.

In this paper we present FEASIBLE, a benchmark generation framework able to
generate benchmarks from a set of queries (in particular from query logs). Our approach
aims to generate customized benchmarks for given use cases or needs of an application.
To this end, FEASIBLE assumes that it is given a set of queries well as the number
of queries (e.g., 25) to be included into the benchmark as input. Then, our approach
computes a sample of the selected subset that reflects the distribution of the queries in
the input set of queries. The resulting queries can then be fed to a benchmark execution
framework to benchmark triple stores. The contributions of this work are as follows:

1. We present the first structure and data-driven feature-based benchmark generation
approach from real queries. By comparing FEASIBLE with DBPSB, we show that
considering data-driven and structural query features leads to benchmarks that are
better approximations of the input set of queries.

2. We present a novel sampling approach for queries based based on exemplars [10]
and medoids.

3. Beside SPARQL SELECT, we conduct the first evaluation of 4 triple stores w.r.t. to
their performance on ASK, DESCRIBE and CONSTRUCT queries separately.

4. We show that the performance of triple stores varies greatly across the four basic
forms of SPARQL query. Moreover, we show that the features used by FEASIBLE
allow for a more fine-grained analysis of our benchmarking results.

The rest of this paper is structured as follows: We begin by providing an overview of
the key SPARQL query features that need to be considered while designing SPARQL
benchmarks. Then, we compare existing benchmarks against these key query features
systematically (Section 3) and point out the weaknesses of current benchmarks that
are addressed by FEASIBLE. Our benchmark generation process is presented in Sec-
tion 4. A detailed comparison with DBPSB and an evaluation of the state-of-the-art
triple stores follows thereafter. The results are then discussed and we finally conclude.
FEASIBLE is open-source and available online at https://code.google.com/
p/feasible/. A demo can be found at http://feasible.aksw.org/.

2 Preliminaries

In this section, we define key concepts necessary to understand the subsequent sections
of this work. We represent each basic graph pattern (BGP) of a SPARQL query as a
directed hypergraph (DH) according to [14]. We chose this representation because it
allows representing property-property joins, which previous works [2,6] do not allow to
model. The DH representation of a BGP is formally defined as follows:

Definition 1. Each basic graph patterns BGPi of a SPARQL query can be represented
as a DH HGi = (V,E, λvt), where

https://code.google.com/p/feasible/
https://code.google.com/p/feasible/
http://feasible.aksw.org/

SELECT DISTINCT ∗ WHERE
{
? drug : d e s c r i p t i o n ? drugDesc .
? drug : drugType : s m a l l M o l e c u l e .
? drug : keggCompoundId ? compound .
? enzyme : x S u b s t r a t e ? compound .
? C h e m i c a l r e a c t i o n : xEnzyme ? enzyme .
? C h e m i c a l r e a c t i o n : e q u a t i o n ? C h e m i c a l E q u a t i o n .
? C h e m i c a l r e a c t i o n : t i t l e ? R e a c t i o n T i t l e .
}

(a) Examplary SPARQL query

: drugType
: small
Molecule

Drug
: descri−
ption

drug
Desc

: keggCo−
mpoundId

compound : xSubs−
tract

: xEnzyme enzyme

Chemical
Reaction

: equation
Chemical
Equation

Tail of hyperedge

: title

Reaction
T itle

Simple Star Path Sink

(b) Corresponding hypergraph

Fig. 1: DH representation of the SPARQL query. Prefixes are ignored for simplicity

– V = Vs ∪ Vp ∪ Vo is the set of vertices of HGi, Vs is the set of all subjects in HGi,
Vp the set of all predicates in HGi and Vo the set of all objects in HGi;

– E ={e1,. . . , et}⊆ V 3 is a set of directed hyperedges (short: edge). Each edge e=
(vs,vp,vo) emanates from the triple pattern <vs, vp, vo> in BGPi. We represent
these edges by connecting the head vertex vs with the tail hypervertex (vp, vo). We
use Ein(v) ⊆ E and Eout(v) ⊆ E to denote the set of incoming and outgoing
edges of a vertex v;

– λvt is a vertex-type-assignment function. Given a vertex v ∈ V , its vertex type can
be ’star’, ’path’, ’hybrid’, or ’sink’ if this vertex participates in at least one join. A

’star’ vertex has more than one outgoing edge and no incoming edge. A ’path’ vertex
has exactly one incoming and one outgoing edge. A ’hybrid’ vertex has either more
than one incoming and at least one outgoing edge or more than one outgoing and at
least one incoming edge. A ’sink’ vertex has more than one incoming edge and no
outgoing edge. A vertex that does not participate in any join is of type ’simple’.

The representation of a complete SPARQL query as a DH is the union of the
representations of query’s BGPs. As an example, the DH representation of the query in
Figure 1a is shown in Figure 1b. Based on the DH representation of SPARQL queries
we can define the following features of SPARQL queries:

Definition 2 (Number of Triple Patterns). From Definition 1, the total number of triple
patterns in a BGPi is equal to the number of hyperedges |E| in the DH representation
of the BGPi.

Definition 3 (Number of Join Vertices). Let ST ={st1,. . . , stj} be the set of vertices
of type ’star’, PT ={pt1,. . . , ptk} be the set of vertices of type ’path’, HB ={hb1,. . . ,
hbl} be the set of vertices of type ’hybrid’, and SN ={sn1,. . . , snm} be the set of
vertices of type ’sink’ in a DH representation of a SPARQL query, then the total number
of join vertices in the query #JV = |ST |+ |PT |+ |HB|+ |SN |.

Definition 4 (Join Vertex Degree). Based on the DH representation of SPARQL queries,
the join vertex degree of a vertex v is JV D(v) = |Ein(v)| + |Eout(v)|, where Ein(v)
resp Eout(v) is the set of incoming resp. outgoing edges of v.

Definition 5 (Triple Pattern Selectivity). Let tpi be a triple pattern and d be a relevant
source for tpi. Furthermore, let N be the total number of triples in d and Nm be
the total number of triples in d that matches tpi, then the selectivity of tpi w.r.t. d is
Sel(tpi, d) = Nm/N .

According to previous works [2,6], a SPARQL query benchmark should vary the
queries it contains w.r.t. the following query characteristics: number of triple patterns,
number of join vertices, mean join vertex degree, query result set sizes, mean triple
pattern selectivities, join vertex types (’star’, ’path’, ’hybrid’, ’sink’), and SPARQL
clauses used (e.g., LIMIT, OPTIONAL, ORDER BY, DISTINCT, UNION, FILTER,
REGEX). In addition, a SPARQL benchmark should contain (or provide options to select)
all four SPARQL query forms (i.e., SELECT, DESCRIBE, ASK, and CONSTRUCT).
Furthermore, the benchmark should contain queries of varying runtimes, ranging from
small to reasonably large query execution times. In the next section, we compare state-
of-the-art SPARQL benchmarks based on these query features.

3 A Comparison of Existing Benchmarks and Query Logs

Different benchmarks have been proposed to compare triple stores for their query
execution capabilities and performance. Table 1 provides a detailed summary of the
characteristics of the most commonly used benchmarks as well as of two real query logs.
All benchmark executions and result set computations were carried out on a machine
with 16 GB RAM and a 6-Core i7 3.40 GHz CPU running Ubuntu 14.04.2. All synthetic
benchmarks were configured to generate 10 million triples. We ran LUBM [7] on
OWLIM-Lite as it requires reasoning. All other benchmarks were ran on virtuoso 7.2
with NumberOfBuffers = 1360000, and MaxDirtyBuffers = 1000000. As query logs,
we used (1) the portion of the DBpedia 3.5.1 query log (a total of 3,159,812 queries)
collected between April 30th, 2010 and July 20th, 20103 as well as (2) the portion of
the Semantic Web Dog Food (SWDF) query log (a total of 1,414,391 queries) gathered
between May 16th, 2014 and November 12th, 2014. Note that we only considered
queries (called cleaned queries) which produce at least 1 result after the query execution
(130,466 queries from DBpedia and 64,029 queries from SWDF).4 In the following, we
compare these benchmarks and query logs w.r.t. the features shown in Table 1.

LUBM was designed to test the triple stores and reasoners for their reasoning capa-
bilities. It is based on a customizable and deterministic generator for synthetic data. The
queries included in this benchmark commonly lead to query results sizes ranges from 2
to 3200, query triple patterns ranges from 1 to 6, and all the queries consist of a single
BGP. LUBM includes a fixed number of SELECT queries (i.e., 15) where none of the
clauses shown in Table 1 is used.

3 We chose this query log because it was used by DBPSB.
4 The datadumps, query logs and cleaned queries for both datasets can be downloaded from

project home page

Table 1: Comparison of SPARQL benchmarks and query logs (F-DBP = FEASIBLE
Benchmarks from DBpedia query log, DBP = DBpedia query log, F-SWDF = FEA-
SIBLE Benchmark from Semantic Web Dog Food query log, SWDF = Semantic Web
Dog Food query log, TPs = Triple Patterns, JV = Join Vertices, MJVD = Mean Join
Vertices Degree, MTPS = Mean Triple Pattern Selectivity, S.D. = Standard Deviation).
Runtime(ms)

LUBM BSBM SP2Bench WatDiv DBPSB F-DBP DBP F-SWDF SWDF
#Queries 15 125 12 125 125 125 130466 125 64030

Fo
rm

s(
%

) SELECT 100 80 91.67 100 100 95.2 97.9 92.8 58.7
ASK 0 0 8.33 0 0 0 1.93 2.4 0.09

CONSTRUCT 0 4 0 0 0 4 0.09 3.2 0.04
DESCRIBE 0 16 0 0 0 0.8 0.02 1.6 41.1

C
la

us
es

(%
)

UNION 0 8 16.67 0 36 40.8 7.97 32.8 29.3
DISTINCT 0 24 41.6 0 100 52.8 4.1 50.4 34.18
ORDER BY 0 36 16.6 0 0 28.8 0.3 25.6 10.67

REGEX 0 0 0 0 4 14.4 0.2 16 0.03
LIMIT 0 36 8.33 0 0 38.4 0.4 45.6 1.79

OFFSET 0 4 8.33 0 0 18.4 0.03 20.8 0.14
OPTIONAL 0 52 25 0 32 30.4 20.1 32 29.5

FILTER 0 52 58.3 0 48 58.4 93.3 29.6 0.72
GROUP BY 0 0 0 0 0 0.8 7.6E-6 19.2 1.34

R
es

ul
ts

Min 3 0 1 0 197 1 1 1 1
Max 1.3E+4 31 4.3E+7 4.1E+9 4.6E+6 1.4E+6 1.4E+6 3.0E+5 3.0E+5
Mean 4.9E+3 8.3 4.5E+6 3.4E+7 3.2E+5 5.2E+4 404 9091 39.5
S.D. 1.1E+4 9.03 1.3E+7 3.7E+8 9.5E+5 1.9E+5 1.2E+4 4.7E+4 2208

B
G

Ps

Min 1 1 1 1 1 1 0 0 0
Max 1 5 3 1 9 14 14 14 14
Mean 1 2.8 1.5 1 2.69 3.17 1.67 2.68 2.28
S.D. 0 1.70 0.67 0 2.43 3.55 1.66 2.81 2.9

T
Ps

Min 1 1 1 1 1 1 0 0 0
Max 6 15 13 12 12 18 18 14 14
Mean 3 9.32 5.9 5.3 4.5 4.8 1.7 3.2 2.5
S.D. 1.81 5.17 3.82 2.60 2.79 4.39 1.68 2.76 3.21

JV

Min 0 0 0 0 0 0 0 0 0
Max 4 6 10 5 3 11 11 3 3
Mean 1.6 2.88 4.25 1.77 1.21 1.29 0.02 0.52 0.18
S.D. 1.40 1.80 3.79 0.99 1.12 2.39 0.23 0.65 0.45

M
JV

D

Min 0 0 0 0 0 0 0 0 0
Max 5 4.5 9 7 5 11 11 4 5
Mean 2.02 3.05 2.41 3.62 1.82 1.44 0.04 0.96 0.37
S.D. 1.29 1.63 2.26 1.40 1.43 2.13 0.33 1.09 0.87

M
T

PS

Min 3.2E-4 9.4E-8 6.5E-5 0 1.1E-5 2.8E-9 1.2E-5 1.0E-5 1.0E-5
Max 0.432 0.045 0.53 0.011 1 1 1 1 1
Mean 0.01 0.01 0.22 0.004 0.119 0.140 0.005 0.291 0.0238
S.D. 0.074 0.01 0.20 0.002 0.22 0.31 0.03 0.32 0.07

R
un

tim
e Min 2 5 7 3 11 2 1 4 3

Max 3200 99 7.1E+5 8.8E+8 5.4E+4 3.2E+4 5.6E+4 4.1E+4 4.1E+4
Mean 437 9.1 2.8E+5 4.4E+8 1.0E+4 2242 30.4 1308 16.1
S.D. 320 14.5 5.2E+5 2.7E+7 1.7E+4 6961 702.5 5335 249.6

The Berlin SPARQL Benchmark (BSBM) [4] uses a total of 125 query templates to
generate any number of SPARQL queries for benchmarking. Multiple use cases such as
explore, update, and business intelligence are included in this benchmark. Furthermore,
it also includes many of the important SPARQL clauses of Table 1. However, the queries
included in this benchmark are rather simple with an average query runtime of 9.1 ms
and a largest query result set size of 31.

SP2Bench mirrors vital characteristics (such as power law distributions or Gaussian
curves) of the data in the DBLP bibliographic database. The queries given in benchmark
are mostly complex. For example, the mean (across all queries) query result size is above
one million and the query runtimes are in the order of 105 ms (see Table 1).

The Waterloo SPARQL Diversity Test Suite (WatDiv) [2] addresses the limitations of
previous benchmarks by providing a synthetic data and query generator to generate large
number of queries from a total of 125 queries templates. The queries cover both simple
and complex categories with varying number of features such as result set sizes, total
number of query triple patterns, join vertices and mean join vertices degree. However,
this benchmark is restricted to conjunctive SELECT queries (single BGPs). This means
that non-conjunctive SPARQL queries (e.g., queries which make use of the UNION and
OPTIONAL features) are not considered. Furthermore, WatDiv does not consider other
important SPARQL clauses, e.g., FILTER and REGEX. However, our analysis of the
query logs of DBpedia3.5.1 and SWDF given in table 1 shows that 20.1% resp. 7.97%
of the DBpedia queries make use of OPTIONAL resp. UNION clauses. Similarly, 29.5%
resp. 29.3% of the SWDF queries contain OPTIONAL resp. UNION clauses.

While the distribution of query features in the benchmarks presented so far is mostly
static, the use of different SPARQL clauses and triple pattern join types varies greatly
from data set to data set, thus making it very difficult for any synthetic query generator to
reflect real queries. For example, the DBpedia and SWDF query log differ significantly
in their use of DESCRIBE (41.1% for SWDF vs 0.02% for DBpedia), FILTER (0.72%
for SWDF vs 93.3% for DBpedia) and UNION (29.3% for SWDF vs 7.97% for DBpedia)
clauses. Similar variations have been reported in [3] as well. To address this issue, the
DBpedia SPARQL Benchmark (DBPSB) [9] (which generates benchmark queries from
query logs) was proposed. However, this benchmark does not consider key query features
(i.e., number of join vertices, mean join vertices degree, mean triple pattern selectivities,
the query result size and overall query runtimes) while selecting query templates. Note
that previous works [2,6] pointed that these query features greatly affect the triple stores
performance and thus should be considered while designing SPARQL benchmarks.

In this work we present FEASIBLE, a benchmark generation framework which is
able to generate a customizable benchmark from any set of queries, esp. from query logs.
FEASIBLE addresses the drawbacks on previous benchmark generation approaches by
taking all of the important SPARQL query features of Table 1 into consideration when
generating benchmarks. In the following, we present our approach in detail.

4 FEASIBLE Benchmark Generation

The benchmark generation behind our approach consists of 3 main steps. The first step
is the cleaning step. Thereafter, the features of the queries are normalized. In a final

step, we then select a sample of the input queries that reflects the cleaned input queries
and return this sample. The sample can be used as seed in template-based benchmark
generation approaches such as DBSBM and BSBM.

4.1 Data Set Cleaning

The aim of the data cleaning step is to remove erroneous and zero-result queries from the
set of queries used to generate benchmarks. This step is not of theoretical necessity but
leads to practically reliable benchmarks. To clean the input data set (here query logs), we
begin by excluding all syntactically incorrect queries. The syntactically correct queries
which lead to runtime errors5 as well as queries which return zero results are removed
from the set of relevant queries for benchmarking. We attach all 9 SPARQL clauses
(e.g., UNION, DISTINCT) and 7 query features (i.e., runtime, join vertices, etc.) given
in Table 1 to each of the queries. For the sake of simplicity we call these 16 (i.e., 9+7)
properties query features in the following. All unique queries are then stored in a file6

and given as input to the next step.

4.2 Normalization of Feature Vectors

The query selection process of FEASIBLE requires distances between queries to be
computed. To ensure that dimensions with high values (e.g., the result set size) do not
bias the selection, we normalize the query representations to ensure that all queries are
located in a unit hypercube. To this end, each of the queries gathered from the previous
step is mapped to a vector of length 16 which stores the corresponding query features
as follows: For the SPARQL clauses, which are binary (e.g., UNION is either used or
not used), we store a value 1 if that clause in used in the query. Otherwise we store
a 0. All non-binary feature vectors are normalized by dividing their value with the
overall maximal value in the data set. Therewith, we ensure that all entries of the query
representations are values between 0 to 1.

4.3 Query Selection

The query selection process is based on the idea of exemplars used in [10] and is shown
in Algorithm 1. We assume that we are given (1) a number e ∈ N of queries to select
as benchmark queries as well as (2) a set of queries L with |L| = n >> e, where
L is the set of all cleaned and normalized queries. The intuition behind our selection
approach is to compute an e-sized partition L = {L1, . . . , Le} of L such that (1)
the average distance between the points in two different elements of the partition is
high and (2) the average distance of points within a partition is small. We can then
select the point closest to the average of each Li (i.e., the medoid of Li) to be a
prototypical example of a query from L and include it into the benchmark generated
by FEASIBLE. We implement this intuition formally by (1) selecting e exemplars
(i.e., points that represent a portion of the space) that are as far as possible from each

5 The runtime errors were measured using Virtuoso 7.2.
6 A sample file can be found at http://goo.gl/YUSU9A

http://goo.gl/YUSU9A

Algorithm 1: Query Selection Approach
Data: Set of queries L; Size of the benchmark e
Result: Benchmark (set of queries)B

1 L̃ = 1
|L|

∑
q∈L

q ;

2 X1 = {argmin
x∈L

d(L̃, x)} ;

3 X = {X1} ;
4 for i = 2; i ≤ e; i+ + do
5 Xi = {argmax

y∈L\X
d(y,X)};

6 X = X ∪ {Xi};
7 end
8 L = ∅;
9 for i = 1; i ≤ e; i+ + do

10 Li = {Xi};
11 L = L ∪ {Li};
12 end
13 for i = 1; i ≤ e; i+ + do
14 Li = {q ∈ L\X : Xi = argmin

X∈X
d(X, q)}

15 end
16 B = ∅;
17 for i = 1; i ≤ e; i+ + do
18 L̃i = 1

|Li|
∑

q∈Li

q;

19 bi = argmin
q∈Li

d(L̃i, q);

20 B = B ∪ {bi};
21 end
22 returnB;

other, (2) partitioning L by mapping every point of L to one of these exemplars to
compute a partition of the space at hand and (3) selecting the medoid of each of the
partitions of space as a query in the benchmark. In the following, we present each of
these steps formally. For the sake of clarity, we use the following running example:
L = {q1 = [0.2, 0.2], q2 = [0.5, 0.3], q3 = [0.8, 0.5], q4 = [0.9, 0.1], q5 = [0.5, 0.5]}
and assume that we need a benchmark with e = 2 queries. Note for the sake of simplicity,
we used feature vectors of length 2 instead of 16.

Selection of Exemplars We implement an iterative approach to the selection of ex-
emplars (see lines 1-7 of Algorithm 1). We begin by finding the average L̃ = 1

n

∑
q∈L

q

of all representations of queries q ∈ L. In our example, this point has the coordinates
[0.58, 0.32]. The first exemplar X1 is the point of L that is closest to the average and
is given by X1 = argmin

x∈L
d(L̃, x), where d stands for the Euclidean distance. In our

example, this is the query q2 with a distance of 0.08. We follow an iterative procedure

to extending the set X of all exemplars: We first find η = argmax
y∈L\X

(∑
x∈X

d(x, y)

)
. η is

the point that is furthest away from all exemplars. In our example, that is the query q4
with a distance of 0.45 from q2. We then add η to X and repeat the procedure for finding
η until |X | = e. Given that e = 2 in our example, we get the set X = {q2, q4} as set of
exemplars.

(a) DBpedia-125 (b) DBpedia-175

Fig. 2: Voronoi diagrams for benchmarks generated by FEASIBLE along the two axes
with maximal entropy. Each of the red points is a benchmark query. Several points are
superposed as the diagram is a projection of a 16-dimensional space unto 2 dimensions.

Selection of Benchmark Queries Let X = {X1, . . . , Xe} the set of all exemplars.
The selection of benchmark queries begins with partitioning the space according to X .
The partition Li is defined as Li = {q ∈ L : ∀j 6= i : d(q,Xi) ≤ d(q,Xj)} ((see lines
8-15 of Algorithm 1). It is simply the set of queries that are closer to Xi than to any
other exemplar. In case of a tie, i.e., d(q,Xi) = d(q,Xj) with i 6= j, we assign q to
min(i, j). In our example, we get the following partition: X = {{q1, q2, q3, q5}, {q4}}.
Finally, we perform the selection of prototypical queries from each partition (see lines
17-22 of Algorithm 1). For each partition Li we begin by computing the average L̃i of
all representations of queries in Li. We then select the query bi = argmin

q∈Li

d(L̃i, q). The

set B of benchmark queries is the set of all queries bi over all Li. Note that |B| = e. In
our example, q4 being the only query in the second partition means that q4 is selected
as representative for the second partition. The average of the first partition is located at
[0.5, 0.375]. The query q2 is the closest to the average, leading to q2 being selected as
representative for the first partition. Our approach thus returns a benchmark with the
queries {q2, q4} as result.

Figures 2a and 2b show Voronoi diagrams of the results of our approach for bench-
marks of size 125 and 175 derived from the DBpedia 3.5.1 query log presented in Table 1
along the two dimensions with the highest entropy. Note that some of the queries are
superposed in the diagram.

5 Complexity Analysis

In the following, we study the complexity of our benchmark generation approach. We
denote the number of features considered during the generation process with d. e is the
number of exemplars and |L| the size of the input data set. Reading and cleaning the file
can be carried out in O(|L|d) as each query is read once and the features are extracted

one at a time. We now need to compute the exemplars. We begin by computing the
average A of all queries, which can be carried out using O(|L|d) arithmetic operations.
Finding the query that is nearest to A has the same complexity. The same approach is
used to detect the other exemplars, leading to an overall complexity of O(e|L|d) for the
computation of exemplars. Mapping each point to the nearest exemplar has an a-priori
complexity of O(e|L|d) arithmetic operations. Given that the distances between the
exemplars and all the points in L are available from the previous step, we can simply
look up the distances and thus gather this information in O(1) for each pair of exemplar
and point, leading to an overall complexity of O(e|L|). Finally, the selection of the
representative in the cluster demands averaging the elements of the cluster and selecting
the query that is closest to this point. For each cluster of size |Cl|, we need (d|Cl|)
arithmetic operations to find the average point. The holds for finding the query nearest to
the average. Given that the sum of the sizes of all the clusters is |L|, we can conclude
that the overall complexity of the selection step is O(d|L|). Overall, the worst-case
complexity of our algorithm is thus O(d|L||E|).

In the best case, no queries passes the cleaning test, leading to no further processing
and to the same complexity as reading the data, which is O(|L|d). The same best-case
complexity holds when a benchmark is generated. Here, the filtering step returns exactly
e queries, leading to the exemplar generation step being skipped and thus to a complexity
of O(|L|d).

6 Evaluation and Results

Our evaluation comprises two main parts. First, we compare FEASIBLE with DBPSB
w.r.t. how well the benchmarks represent the input data. To this end, we use the composite
error function defined below. In the second part of our evaluation, we use FEASIBLE
benchmarks to compare triple stores w.r.t. their query execution performance.

6.1 Composite Error Estimation

The benchmarks we generate aim to find typical queries for a given query log. From the
point of view of statistics, this is equivalent to computing a subset of a population that has
the same characteristics (here mean and standard deviation) as the original population.
Thus, we measure the quality of the sampling approach of a benchmark by how much the
mean and standard deviation of the features of its queries deviates from that of the query
log. We call µi resp. σi the mean resp. the standard deviation of a given distribution w.r.t.
to the ith feature of the said distribution. Let B be a benchmark extracted from a set of
queries L. We use two measures to compute the difference between B and L, i.e., the
error on the means Eµ and deviations Eσ

Eµ =
1

k

k∑
j=1

(µi(L)− µi(B))2 and Eσ =
1

k

k∑
j=1

(σi(L)− σi(B))2. (1)

We define a composite error estimation E as the harmonic mean of Eµ and Eσ:

E =
2EµEσ
Eµ + Eσ

. (2)

6.2 Experimental Setup

Data sets and Query Logs: We used the DBpedia 3.5.1 (232.5M triples) and SWDF
(294.8K triples) data sets for triple store evaluation. As queries (see Section 3), we used
130,466 cleaned queries for DBpedia and 64,029 cleaned queries for SWDF.

Benchmarks for Composite Error Analysis: In order to compare FEASIBLE with
DBPSB, we generated benchmarks of sizes 15, 25, 50, 75, 100, 125, 150, and 175
queries from the DBpedia 3.5.1 query log. Recall this is exactly the same query log used
in DBPSB. DBPSB contains a total of 25 query templates derived from 25 real queries.
A single query was generated per query template in order to generate a benchmark of 25
queries. Similarly, 2 queries were generated per query template for a benchmark of 50
queries and so on. The 15-query benchmark of DBPSB was generated from the 25-query
benchmark by randomly choosing 15 of the 25 queries. We chose to show results on
a 15-query benchmark because LUBM contains 15 queries while SP2Bench contains
12. We also generated benchmarks of the same size (15-175) from SWDF to compare
FEASIBLE’s composite errors as well as the performance of triple stores across different
data sets.

Triple Stores: We used four triple stores in our evaluation: (1) Virtuoso Open-Source
Edition version 7.2 with NumberOfBuffers = 680000, MaxDirtyBuffers = 500000; (2)
Sesame Version 2.7.8 with Tomcat 7 as HTTP interface and native storage layout. We set
the spoc, posc, opsc indices to those specified in the native storage configuration. The
Java heap size was set to 6GB; (3) Jena-TDB (Fuseki) Version 2.0 with a Java heap size
set to 6GB and (4) OWLIM-SE Version 6.1 with Tomcat 7.0 as HTTP interface. We set
the entity index size to 45,000,000 and enabled the predicate list. The rule set was empty
and the Java heap size was set to 6GB. Ergo, we configured all triple stores to use 6GB
of memory and used default values otherwise.

Benchmarks: Most of the previous evaluations were carried out on SELECT queries
only (see Table 1). Here, beside evaluating the performance of triples stores on SELECT
evaluation, we also wanted to compare triple stores on the other three forms of SPARQL
queries. To this end, we generated DBpedia-ASK-100 (100-ASK-query benchmark
derived from DBpedia) and SWDF-ASK-50 (50-ASK-query benchmark derived from
SWDF)7 and compared the selected triple stores for their ASK query processing perfor-
mances. Similarly, we generated DBpedia-CONSTRUCT-100 and SWDF-CONSTRUCT-
23, DBpedia-DESCRIBE-25 and SWDF-DESCRIBE-100, and DBpedia-SELECT-100
and SWDF-SELECT-100 benchmarks to test the selected systems for CONSTRUCT,
DESCRIBE, and SELECT queries, respectively. Furthermore, we generated DBpedia-
Mix-175 (DBpedia benchmark of 175 mix queries of all the four query forms) and
SWDF-Mix-175 to test the selected triple stores for their general query processing
performance.

7 We chose to select only 50 queries because the SWDF log we used does not contain enough
ASK queries to generate a 100-query benchmark.

Benchmark Execution: The evaluation was carried out one triple store at a time on
one machine. First, all data sets were loaded into the selected triple store. Once the
triple store had completed the data loading, the 2-phase benchmark execution phase
began: (1) Warm-up Phase: To measure the performance of the triple store under normal
operational conditions, a warm-up phase was used where random queries from the query
log were posed to triple stores for 10 minutes; (2) Hot-run Phase: During this phase,
the benchmark query mixes were sent to the tested store. We kept track of the average
execution time of each query as well as of the number of query mixes per hour (QMpH).
This phase lasted for two hours for each triple store. Note that the benchmark and the
triple store were run on the same machine to avoid network latency. We set the query
timeout to 180 seconds. The query was aborted after that and maximum time of 180
seconds was used as the query runtime for all queries which timed out. All the data (data
dumps, benchmarks, query logs, FEASIBLE code) to repeat our experiments along with
complete evaluation results are available at the project website.

6.3 Experimental Results

Composite Error Table 2 shows a comparison of the composite errors of DBPSB
and FEASIBLE for different benchmarks. Note that DBPSB queries templates are only
available for the DBpedia query log. Thus, we were not able to calculate DBPSB’s
composite errors for SWDF. As an overall composite error evaluation, FEASIBLE’s
composite error is 54.9% smaller than DBPSB. The reason for DBPSB’s error being
higher that FEASIBLE’s lies in the fact that it only considers the number of query
triple patterns and the SPARQL clauses UNION, OPTIONAL, FILTER, LANG, REGEX,
STR, and DISTINCT as features. Important query features (such as query result sizes,
execution times, triple patterns and join selectivities, and number of join vertices) were
not considered when generating the 25 query templates.8 Furthermore, DBPSB only
includes SELECT queries. The other three SPARQL query forms, i.e., CONSTRUCT,
ASK, and DESCRIBE are not considered. In contrast, our approach considers all of the
query forms, SPARQL clauses, and query features reported in Table 1.9 It is important
to mention that FEASIBLE’s overall composite error across both data sets is only 0.038.

Triple Store Performance Figure 3 shows a comparison of the selected triple stores
in terms of queries per second (QpS) and query mixes per hour (QMpH) for different
benchmarks generated by FEASIBLE. Table 3 shows the overall rank-wise query dis-
tributions of the triple stores. Our ranking is partly different from the DBPSB ranking.
Overall, (for mix DBpedia and SWDF benchmarks of 175 queries each, Figure 3e to
Figure 3g), Virtuoso ranks first followed by Fuseki, OWLIM-SE, and Sesame. Virtuoso
is 59% faster than Fuseki. Fuseki is 1.7% faster than OWLIM-SE, which in turn 16%
faster than Sesame.10

8 Queries templates available at: http://goo.gl/1oZCZY
9 See FEASIBLE online demo for the customization of these features

10 Note the percentage improvements are calculated from the QMpH values as A is (1-
QMpH(A)/QMpH(B)*100) percent faster than B.

http://goo.gl/1oZCZY

Table 2: Comparison of the Mean Eµ , Standard Deviation Eσ and Composite E errors
for different benchmark sizes of DBpedia and Semantic Web Dog Food query logs.
FEASIBLE outperforms DBPSB across all dimensions.

Benchmark FEASIBLE DBPSB Benchmark FEASIBLE
Eµ Eσ E Eµ Eσ E Eµ Eσ E

DBpedia-15 0.045 0.054 0.049 0.139 0.192 0.161 SWDF-15 0.019 0.043 0.026
DBpedia-25 0.041 0.054 0.046 0.113 0.139 0.125 SWDF-25 0.034 0.051 0.041
DBpedia-50 0.045 0.056 0.050 0.118 0.132 0.125 SWDF-50 0.036 0.052 0.043
DDBpedia-75 0.053 0.061 0.057 0.096 0.095 0.096 SWDF-75 0.035 0.051 0.042
DDBpedia-100 0.054 0.064 0.059 0.130 0.132 0.131 SWDF-100 0.036 0.050 0.042
DDBpedia-125 0.054 0.064 0.058 0.088 0.082 0.085 SWDF-125 0.034 0.048 0.040
DBpedia-150 0.055 0.064 0.059 0.107 0.124 0.115 SWDF-150 0.033 0.046 0.038
DBpedia-175 0.055 0.065 0.059 0.127 0.144 0.135 SWDF-175 0.033 0.045 0.038
Average 0.050 0.060 0.055 0.115 0.130 0.121 Average 0.032 0.048 0.039

A more fine-grained look at the evaluation reveals surprising findings: On ASK
queries, Virtuoso is clearly faster than the other frameworks (45% faster than Sesame,
which is 16% faster than Fuseki, which is in turn 96% faster than OWLIM-SE, see
Figure 3a). The ranking changes for CONSTRUCT queries: While Virtuoso is still first
(87% faster than OWLIM-SE), OWLIM-SE is now faster that 14% faster than Fuseki,
which in turn is 42% faster than Sesame (Figure 3b). The most drastic change occurs on
the DESCRIBE benchmark, where Fuseki ranks first (66% faster than Virtuoso, which
is 86% faster than OWLIM-SE, which in turns 47% faster than Sesame, see Figure 3c).
Yet another ranking emerges from the SELECT benchmarks, where Virtuoso is overall
55% faster than OWLIM-SE, which is 41% faster than Fuseki, which in turns 11% faster
than Sesame (Figure 3d). These results show that the performance of triple stores varies
greatly across the four basic SPARQL forms and none of the system is the sole winner
across all query forms. Moreover, the ranking also varies across the different datasets
(see, e.g., ASK benchmark for DBpedia and SWDF). Thus, our results suggest that (1)
a benchmark should comprise a mix of SPARQL ASK, CONSTRUCT, DESCRIBE, and
SELECT queries that reflects the real intended usage of the triple stores to generate
accurate results and (2) there is no universal winner amongst triple stores, which points
again towards the need to create customized benchmarks for applications when choosing
their backend. FEASIBLE addresses both of these requirements by allowing users to
generate dedicated benchmarks from their query logs.

Some interesting observations were revealed by the rank-wise queries distributions
of triple stores shown in Table 3: First, none of the system is sole winner or loser for a
particular rank. Overall, Virtuoso’s performance mostly lies in the higher ranks, i.e., rank
1 and 2 (68.29%). This triple store performs especially well on CONSTRUCT queries.
Fuseki’s performance is mostly in the middle ranks, i.e., rank 2 and 3 (65.14%). In
general, it is faster for DESCRIBE queries and is on a slower side for CONSTRUCT and
queries containing FILTER and ORDER BY clauses. While OWLIM-SE’s performance
is usually on the slower side, i.e., rank 3 and 4 (60.86 %), it performs well on complex
queries with large result set sizes and complex SPARQL clauses. Finally, Sesame is

0

50

100

150

200

250

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

SWDF DBpedia

Q
p
S

(a) QpS (ASK-Only)

0

0.5

1

1.5

2

2.5

3

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

SWDF DBpedia

Q
p
S

(b) QpS (CONSTRUCT-Only)

0

10

20

30

40

50

60

70

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

SWDF DBpedia

Q
p
S

(c) QpS (DESCRIBE-Only)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

Se
sa
m
e

V
ir
tu
o
so

O
W
LI
M
-S
E

Fu
se
ki

SWDF DBpedia

Q
p
S

(d) QpS (SELECT-Only)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sesame Virtuoso OWLIM-SE Fuseki

SWDF

Q
p
S

(e) QpS (SWDF-Mix)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sesame Virtuoso OWLIM-SE Fuseki

DBpedia

Q
p
S

(f) QpS (DBpedia-Mix)

0

5

10

15

20

25

30

35

40

Sesame Virtuoso OWLIM-SE Fuseki

SWDF

Q
M
p
H

(g) QMpH (SWDF-Mix)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sesame Virtuoso OWLIM-SE Fuseki

DBpedia

Q
M
p
H

(h) QMpH (DBpedia-Mix)

Fig. 3: Comparison of the triple stores in terms of Queries per Second (QpS) and Query
Mix per Hour (QMpH), where a Query Mix comprise of 175 distinct queries.

Table 3: Overall rank-wise ranking of triple stores. All values are in percentages.
SWDF DBpedia Overall

Triple Store 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
Virtuoso 38.29 24.57 21.71 15.43 54.86 18.86 15.43 10.86 46.57 21.71 18.57 13.14
Fuseki 17.14 39.43 32.00 11.43 24.00 34.86 24.00 17.14 20.57 37.14 28.00 14.29
OWLIM-SE 10.29 30.29 21.14 38.29 13.14 24.57 25.14 37.14 11.71 27.43 23.14 37.71
Sesame 37.71 12.00 29.14 21.14 25.71 16.57 32.57 25.14 31.71 14.29 30.86 23.14

either fast or slow. For example, for 31.71% of the queries, it achieve the rank 1 (second
best after Virtuoso) and but achieves rank 4 on 23.14% of the queries (second worse
after OWLIM-SE). In general Sesame is very efficient on simple queries with small
result set sizes, a small number of triple triple patterns, and a few SPARQL clauses.
However, it performs poorly as soon as the queries grow in complexity. These results
shows yet another aspect of the importance of taking structural and data-driven features
into consideration while generating benchmarks as they allow deeper insights into the
type of queries on which systems perform well or poorly.

Finally, we also looked into the number of query timeouts during the complete
evaluation. Most of the systems time out for SELECT queries. Overall, Sesame has
the highest number of timeouts (43) followed by Fuseki (32), OWLIM-SE (22), and
Virtuoso (14). For Virtuoso, the timeout queries have at least one triple pattern with an
unbound subject, an unbound predicate and an unbound object (i.e., a triple pattern of
the form ?s ?p ?o). The corresponding result sets were so large that they could not
be computed in 3 minutes. The other three systems mostly timeout for the same queries.
OWLIM-SE generally performs better for complex queries with large result set sizes.
Fuseki has problems with queries containing FILTER (12/32) and ORDER BY clauses
(11/32 queries). Sesame’s performance is slightly worse for complex queries containing
many triple patterns and joins as well as complex SPARQL clauses. Note that Sesame
also times out for 8 CONSTRUCT queries. All the timeout queries for each triple store
are provided at the project website.

7 Conclusion

In this paper we presented FEASIBLE, a customizable SPARQL benchmark generation
framework. We compared FEASIBLE with DBPSB and showed that our approach is
able to produce high-quality (in terms of their composite error) benchmarks. In addition,
our framework allows users to generate customized benchmarks suited for a particular
use case, which is of utmost importance when aiming to gather valid insights into the
real performance of different triple stores for a given application. This is demonstrated
by our triple store evaluation, which shows that the ranking of triple stores varies greatly
across different types of queries as well as across datasets. Our results thus suggest that
all of the four query forms should be included in the future SPARQL benchmarks. For
the sake of future work, we have started converting linked data query logs into RDF and
made available through the LSQ [12] endpoint. Beside the key queries characteristics
discussed in Table 1, we have attached many of the SPARQL 1.1 features to each of the

query. We will extend FEASIBLE to query the LSQ SPARQL endpoint directly so as to
gather queries for the benchmark creation process.

Acknowledgements

This work was partially supported by projects GeoKnow (GA: 318159) and SAKE
(Grant No. 01MD15006E).

References

1. Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruckhaus.
Anapsid: An adaptive query processing engine for sparql endpoints. In ISWC, 2011.

2. Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. Diversified stress testing
of rdf data management systems. In ISWC. 2014.

3. Mario Arias, Javier D. Fernández, Miguel A. Martı́nez-Prieto, and Pablo de la Fuente. An
empirical study of real-world SPARQL queries. CoRR, 2011.

4. Christian Bizer and Andreas Schultz. The berlin sparql benchmark. IJSWIS, 2009.
5. Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea. Apples

and oranges: A comparison of rdf benchmarks and real rdf datasets. In SIGMOD, 2011.
6. Olaf Görlitz, Matthias Thimm, and Steffen Staab. Splodge: Systematic generation of sparql

benchmark queries for linked open data. In ISWC. 2012.
7. Yuanbo Guo and Jeff Heflin. LUBM: A benchmark for owl knowledge base systems. JWS,

2005.
8. M Kamdar, Aftab Iqbal, Muhammad Saleem, H Deus, and Stefan Decker. Genomesnip:

Fragmenting the genomic wheel to augment discovery in cancer research. In CSHALS, 2014.
9. Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. Dbpedia

sparql benchmark - performance assessment with real queries on real data. In ISWC, 2011.
10. Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES - A time-efficient approach for large-

scale link discovery on the web of data. In IJCAI, 2011.
11. Francois Picalausa and Stijn Vansummeren. What are real sparql queries like? In SWIM,

2011.
12. Muhammad Saleem, Intizar Ali, Aidan Hogan, Qaiser Mehmood, and Axel-Cyrille Ngonga

Ngomo. LSQ: The linked sparql queries dataset. In ISWC, 2015.
13. Muhammad Saleem, Maulik R Kamdar, Aftab Iqbal, Shanmukha Sampath, Helena F Deus,

and Axel-Cyrille Ngonga Ngomo. Big linked cancer data: Integrating linked tcga and pubmed.
JWS, 2014.

14. Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. HiBISCuS: Hypergraph-based source
selection for sparql endpoint federation. In ESWC, 2014.

15. Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira, HelenaF. Deus,
and Manfred Hauswirth. DAW: Duplicate-aware federated query processing over the web of
data. In ISWC, 2013.

16. Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte, and Thanh
Tran. Fedbench: A benchmark suite for federated semantic data query processing. In ISWC,
2011.

17. Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel. Sp2bench: a sparql
performance benchmark. In ICDE, 2009.

18. Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt. FedX:
Optimization techniques for federated query processing on linked data. In ISWC, 2011.

	FEASIBLE: A Featured-Based SPARQL Benchmark Generation Framework

