
Federated SPARQL Queries Processing with
Replicated Fragments

Gabriela Montoya1,2, Hala Skaf-Molli1, Pascal Molli1, and Maria-Esther Vidal3

1 LINA – Nantes University, Nantes, France
{gabriela.montoya,hala.skaf,pascal.molli}@univ-nantes.fr

2 Unit UMR6241 CNRS, Nantes, France
3 Universidad Simón Boĺıvar, Caracas, Venezuela
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Abstract. Federated query engines provide a unified query interface to
federations of SPARQL endpoints. Replicating data fragments from dif-
ferent Linked Data sources facilitates data re-organization to better fit
federated query processing needs of data consumers. However, existing
federated query engines are not designed to support replication and repli-
cated data can negatively impact their performance. In this paper, we for-
mulate the source selection problem with fragment replication (SSP-FR).
For a given set of endpoints with replicated fragments and a SPARQL
query, the problem is to select the endpoints that minimize the number of
tuples to be transferred. We devise the Fedra source selection algorithm
that approximates SSP-FR. We implement Fedra in the state-of-the-art
federated query engines FedX and ANAPSID, and empirically evaluate
their performance. Experimental results suggest that Fedra efficiently
solves SSP-FR, reducing the number of selected SPARQL endpoints as
well as the size of query intermediate results.
Keywords: Linked Data ¨ Federated Query Processing ¨ Source Selection
¨ Fragment Replication

1 Introduction

SPARQL endpoints enable to consume RDF data exploiting the expressiveness
of the SPARQL query language. Nevertheless, recent studies reveal that existing
public SPARQL endpoints main limitation is availability [4].

In distributed databases [17], a common practice to overcome availability
problems is to replicate data near data consumers. Replication can be achieved
by complete dataset replication, active caching, pre-fetching or fragmentation [13].

RDF data consumers can replicate subsets of RDF datasets or replicated
fragments, and make them accessible through SPARQL endpoints. This will
provide the support for an efficient RDF data re-organization according to the
needs and computational resource capacity of data consumers, while these data
can be still accessed using SPARQL endpoints. Unfortunately, although SPARQL
endpoints can transparently access replicated fragments, as well as maintain their
consistency [13], federated query engines are not tailored to exploit the benefits
of replicated fragments.



Federated SPARQL engines [1], [6], [9], [18], [21] allow data consumers to
execute SPARQL queries against a federation of SPARQL endpoints. However,
these engines are just designed to select the SPARQL endpoints that ensure
both a complete answer and an efficient execution of the query. In presence of
replication, existing federated query engines may retrieve data from every rele-
vant endpoint, and produce a large number of intermediate results that trigger
many requests to the endpoints. Thus, federated query engines may exhibit poor
performance while availability of the selected SPARQL endpoints is negatively
impacted.

Although the problem of managing RDF data overlapping during federated
query processing has been addressed in [12], [20], the problem of managing repli-
cation in a federation of RDF datasets still remains open. DAW [20] is able to
detect overlapping between datasets and optimize source selection based on that.
However, because DAW is not designed to manage data replication, there is no
support for explicitly define and use replicated fragments. In consequence, DAW
may select redundant data sources and generate a high number of intermediate
results as we will report in our experiments.

In this paper, we build a replication-aware SPARQL federated query engine
by integrating into state-of-the art federated query engines FedX [21] and ANAP-
SID [1], a source selection strategy called Fedra that solves the source selec-
tion problem with fragment replication (SSP-FR). For a given set of SPARQL
endpoints with replicated fragments and a SPARQL query, the problem is to
minimize the number of transferred data from endpoints to the federated query
engines, while preserving answer completeness and reducing data redundancy.

We empirically study federated query engines FedX and ANAPSID extended
with Fedra and DAW on synthetic and real datasets. The results suggest that
Fedra efficiently reduces intermediate results and data redundancy.

The paper is organized as follows. Section 2 describes background and moti-
vations. Section 3 defines replicated fragments and presents the source selection
problem for fragment replication. Section 4 presents the Fedra source selec-
tion algorithm. Section 5 reports our experimental results. Section 6 summarizes
related works. Finally, conclusions and future works are outlined in Section 7.

2 Background and Motivations

Existing SPARQL federated query engines do not support replicated data. To
illustrate, we replicated the DBpedia dataset and defined two federations. The
first is composed of one mirror of DBpedia, and the second of two identical
mirrors of DBpedia. We used FedX [21] and ANAPSID [1] to execute the query in
Figure 1a against both federations. In the first federation, these engines produced
the same query answers. On the other hand, for the second federation, these
query engines have no knowledge about the relationships among the mirrors of
DBpedia, and they contact both data sources. In this way, performance in terms



(a) DBpedia Query

s e l e c t d i s t i n c t ?p ?m ?n ?d where {
?p dbprop : name ?m .
?p dbprop : n a t i o n a l i t y ?n .
?p dbprop : d o c t o r a l A d v i s o r ?d

}

(b) Query Execution

#DBpedia Execution Time (ms) # Results
Replicas FedX ANAPSID FedX ANAPSID

1 1,392 22,972 8,921 8,921
2 215,907 ě 1,800,000 418 8,921

Fig. 1: DBpedia query and its execution time and number of results against one
and two replicas of DBpedia for FedX and ANAPSID

of execution time and number of results, is seriously degraded as depicted in
Figure 1b.1

Furthermore, if the DAW approach were used, resources of data providers
and consumers would be used to compute and download data summaries. DAW
could select different DBpedia data sources per triple pattern, and execute thus
the join between retrieved data at the federated engine level.

Of course, if federated query engines would know that one endpoint is the
mirror of the other, the source selection pruning could be done more efficiently,
i.e., only one source would be selected to execute the query. This problem is even
more challenging if we consider that one endpoint can partially replicate data
from several RDF datasets, i.e., only fragments of several datasets are replicated.

A1
Triples to
transfer

s1 s2 s3 s4 s5

DBpedia 166,177 3,229 3,229 0 0
LinkedMDB 76,180 13,430 0 13,430 0
Consumer1 242,357 0 13,430 3,229 48

A2

C1

select distinct ?director ?nat
?genre where {
?director dbo : nationality ?nat .
?film dbo : director ?director .
?movie owl : sameAs ?film .
?movie linkedmdb : genre ?genre }

client

f1:?director dbo : nationality ?nat
f2:?film dbo : director ?director

f3:?movie owl : sameAs ?film
f4:?movie linkedmdb : genre ?genre

48

3, 229 13, 430

Fig. 2: Client defines a federation composed of DBpedia (A1), LinkedMDB (A2),
and one Consumer (C1) endpoints with four replicated fragments

1 FedX retrieves less results with two mirrors of DBpedia because it reaches the end-
points maximum number of result rows.



Suppose a Web application poses federated queries against endpoints A1
(DBpedia) and A2 (LinkedMDB). In order to speed up the queries, a data con-
sumer endpoint C1 with replicated fragments has been installed as in Figure 2.
Fragments are defined as simple CONSTRUCT SPARQL queries with one triple
pattern. Fragments allow for the re-organization of RDF data on C1 to better
address needs of data consumers..

Even in this simple setup, processing our running query against a federation
including A1, A2, and C1 raises the problem of source selection with fragment
replication (SSP-FR). There are at least five options to select sources for exe-
cuting this query; these choices produce different number of transferred tuples
as shown in Figure 2: (i) If no information about replicated fragments is avail-
able, all sources may be selected to retrieve data for all the triple patterns. The
number of intermediate results is given in the solution s1. This will be the be-
havior of a federated query engine like FedX that ensures answer completeness.2

(ii) Endpoints A1 and A2 could be chosen, in this case the number of interme-
diate results is given in s2. The number of intermediate results in s2 is less than
s1 since some joins could be executed at A1 and A2. (iii) Another choice may
be to use the C1 endpoint in combination with either A1 or A2 ps3, s4q. This
produces the same number of intermediate results as in s2, but they have the
advantage of accessing less public endpoints. (iv) A last choice could be to use
the C1 endpoint to retrieve data for all the triple patterns ps5q. This solution
profits from replicated fragments to execute opportunistic joins at C1; thus, it
is able to achieve the best performance in terms of the number of intermediate
results.

As the number of transferred tuples increases, the availability of the con-
tacted SPARQL endpoints can be affected. A replication aware federated query
engine could select the best sources to reduce the size of intermediate results
while preserving answer completeness. In this paper, we formally address the
following problem: Given a SPARQL query and a set of relevant SPARQL end-
points with replicated fragments, choose the SPARQL endpoints to contact in
order to produce a complete query answer and transfer the minimum amount of
data. We aim to develop an algorithm that produces solution s5 whenever pos-
sible, providing as output the sources to be used by a federated query engine.

3 Definitions and Problem Description

This section introduces definitions and the source selection problem with frag-
ment replication (SSP-FR).

3.1 Definitions

Fragments are used to replicate RDF data. The data of a fragment is defined
by means of the dataset public endpoint, or authoritative endpoint, and a CON-
STRUCT query with one triple pattern.

2 In order to preserve joins between different endpoints, each triple pattern should be
posed to each endpoint individually.



A1
F CONSTRUCT WHERE { %s% }
f2 ?film dbo:director ?director
f3 ?movie owl:sameAs ?film
f4 ?movie linkedmdb:genre ?genre
f5 ?movie linkedmdb:genre film genre:14
f6 ?director dbo:nationality dbr:France
f7 ?director dbo:nationality dbr:United Kingdom

A2

C1 C2 C3

select distinct
?director ?nat ?genre where {
?director dbo : nationality ?nat . (tp1)
?film dbo : director ?director . (tp2)
?movie owl : sameAs ?film . (tp3)
?movie linkedmdb : genre ?genre } (tp4)

Client

f2, f6

f4

f2, f7 f3, f5 f3, f4

f2

tp1, tp2, tp4 tp1, tp2, tp3, tp4 tp2, tp3, tp4

Fig. 3: Client defines a federation composed of C1,C2, and C3 that replicates
fragments f2´ f7

Definition 1 (Fragment). A fragment is a tuple f “ xu, sy

– u is the non-null URI of the authoritative endpoint where f is available;
– s is a CONSTRUCT query with one triple pattern.

Without loss of generality, s is limited to one triple pattern as in [13], [22];
this reduces the complexity of fragment containment problem as described in
Definition 2. Additionally, we assume replicated fragments comprise RDF data
accessible from public endpoints, i.e., the authoritative endpoints of the repli-
cated fragments are disjoint with data consumer endpoints. This will allow data
consumers to re-organize RDF data replicated from different public endpoints
to fit in this way, their needs and requirements.

In this work, we make the following assumptions: (i) Fragments are replicated
from public endpoints, and there is just one level of replication. (ii) Fragments
are read-only and perfectly synchronized; the fragment synchronization problem
is studied in [13], while querying fragments with divergence is addressed in [16].
(iii) For the sake of simplicity, we suppose that RDF data accessible through the
endpoints are described as fragments.

To illustrate, consider the federation given in Figure 3. This federation ex-
tends the setup in Figure 2. Suppose three Web applications pose queries against
DBpedia and LinkedMDB. To speed up query processing, data consumer end-
points: C1, C2, and C3 with replicated fragments have been configured.



At startup, the federated query engine loads the fragments description for
each of the federation endpoints, and computes both the fragment and contain-
ment mappings. The fragment mappings is a function that maps fragments to
a set of endpoints; the containment mapping is based on containment relation
(fl Ď fk) described in the Definition 2.

Two fragments loaded from two different endpoints Ci,Cj that have the
same authoritative endpoint and equivalent construct queries are concatenated
in the fragment mapping. For example, the federated engine loads fragments
xhttp://dbpedia.org/sparql, ?film db:director ?directory from C1, C2, C3, com-
putes equivalence, and adds in its fragment mapping xhttp://dbpedia.org/sparql,
?film db:director ?directory Ñ {C1,C2,C3}.

Query containment and equivalence have been studied extensively. We adapt
the definition given in [11] for the case of a triple pattern query.

Definition 2 (Triple Pattern Containment). Let TP pDq denote the result
of execution of the triple pattern TP against an RDF dataset D. Let TP1 and
TP2 be two triple patterns. We say that TP1 is contained in TP2, denoted by
TP1 Ď TP2, if for any RDF dataset D, TP1pDq Ď TP2pDq. We say that TP1 is
equivalent to TP2, denoted by TP1 ” TP2, if TP1 Ď TP2 and TP2 Ď TP1.

In the case of triple patterns, testing containment [10] amounts to finding
a substitution of the variables in the triple patterns.3 TP1 Ď TP2, iff there is
a substitution θ such that applying θ to TP2 returns the triple pattern TP1.
Testing triple pattern containment has a complexity of Op1q. Solving the deci-
sion problem of triple pattern containment between TP1 and TP2, TP1 Ď TP2,
requires to check if TP1 imposes at least the same restrictions as TP2 on the
subject, predicate, and object positions, i.e., TP1 should have at most the same
number of unbounded variables as TP2.

For the federation in Figure 3, f5 Ď f4 because f4 and f5 share the same
authoritative endpoint and there is a substitution θ defined as θp?genreq “
film genre : 14, θp?movieq “?movie, and applying θ to f4 returns f5. After
identifying a substitution θ for all pair-wise fragments, it is straightforward to
compute a containment mapping for a federation of SPARQL endpoints.

We can rely on fragment descriptions and the containment property to de-
termine relevant fragments to a query. Relevant fragments contain relevant RDF
data to each of the triple patterns of the query. A fragment is relevant to a query
Q, if it is relevant to at least one triple pattern of the query.

Definition 3 (Fragment relevance). Let f be a fragment defined by a triple
pattern TP1. Let TP2 be a triple pattern of a query Q. f is relevant to Q if
TP2 Ď TP1 or TP1 Ď TP2.

Table 1a shows the relevant fragments to the triple patterns in query Q, and
the endpoints that provide these fragments. For example, the triple pattern tp1
has two relevant fragments: f6 and f7, and triple pattern tp4 has two relevant
fragments: f4 and f5. Fragment f4 can produce the complete answer of tp4
because f5 Ď f4, while both f6 and f7 are required to answer tp1.

3 The substitution operator preserves URIs and literals, only variables are substituted.



Table 1: SSP-FR for query Q over a federation of C1, C2, and C3 of Figure 3
(a) Relevant Fragments to Q

Q triple pattern RF Endpoints
tp1 ?director dbo:nationality ?nat f6 C1

f7 C2
tp2 ?film dbo:director ?director f2 C1,C2,C3
tp3 ?movie owl:sameAs ?film f3 C2,C3
tp4 ?movie linkedmdb:genre ?genre f4 C1,C3

f5 C2

(b) Answer completeness preservation

TP D0(tp) D1(tp) D2(tp)
tp1 {C1,C2} {C1,C2} {C1,C2}
tp2 {C1,C2,C3} {C1} {C3}
tp3 {C2,C3} {C2} {C3}
tp4 {C1,C2,C3} {C3} {C3}

Triples to
transfer

421,675 170,078 8,953

3.2 Source Selection Problem with Fragment Replication (SSP-FR)

Given a SPARQL query Q, a set of SPARQL endpoints E, the set of fragments
F that have been replicated by at least one endpoint in E, a fragment mapping
endpoints(), a containment mapping Ď.

The Source Selection Problem with Fragment Replication (SSP-FR) is to
assign to each triple pattern in Q, the set of endpoints from E that need to be
contacted to answer Q. A solution of SSP-FR corresponds to a mapping D that
satisfies the following properties:

1. Answer completeness preservation: sources selected in D do not reduce
the query engine answer completeness.

2. Data redundancy minimization: cardinality(D(tp)) is minimized for all
triple pattern tp in Q, i.e., redundant data is minimized.

3. Data transfer minimization: executing the query using the sources se-
lected in D minimizes the number of transferred data.

We illustrate SSP-FR on running query Q of Figure 3. Table 1a presents
relevant fragments for each triple pattern. Table 1b shows three Dptpq that
ensure the completeness preservation property. It may seem counterintuitive that
these three D(tp) do ensure the completeness preservation property, as they do
not include existing DBpedia triples for dbo:nationality predicate with object
different from dbr:France and dbr:United Kingdom, but as they are not included
in endpoints in E, these triples are inaccessible to the federation. Even if D1

and D2 minimize the number of selected endpoints per triple pattern, only D2

minimizes the transferred data. Indeed, executing tp1, tp2, tp3 against replicated
fragments that are located in the same data consumer endpoint will greatly
reduce the size of intermediate results.

The approach proposed by Saleem et al. [20] is not designed for solving
SSP-FR. Indeed, it does not take into account replicated data, and may produce
a solution as D1. The Fedra algorithm exploits properties of the replicated
fragments and is able to find solution D2.

4 FEDRA: an Algorithm for SSP-FR

The goal of Fedra is to reduce data transfer by taking advantage of the repli-
cation of relevant fragments for several triple patterns on the same endpoint.



Algorithm 1 Fedra Source Selection algorithm

Require: Q: SPARQL Query; F: set of Fragments; endpoints : Fragment Ñ set of Endpoint; Ď :
TriplePattern ˆ TriplePattern

Ensure: selectedEndpoints: map from TriplePattern to set of Endpoint.
1: function sourceSelection(Q,F,endpoints,Ď)
2: triplePatterns Ð get triple patterns in Q
3: R, E Ð H, H
4: for each tp P triplePatterns do
5: R(tp) Ð relevantFragments(tp, F) Ź Relevant fragments as in Definition 3
6: R(tp) Ð ttf : f P Rptpq : tp Ď fuu

Ť

ttfu : f P Rptpq : f Ď tp^ pDg : g P Rptpq : f Ă g Ď tpqu
7: E(tp) Ð { (

Ť

endpoints(f) : f P fs) : fs P R(tp) }
8: basicGP Ð get basic graph patterns in Q
9: for each bgp P basicGP do
10: unionReduction(bgp, E) Ź endpoints reduction for multiple fragments triples
11: bgpReduction(bgp, E) Ź endpoints reduction for the bgp triples

12: for each (tp, E(tp)) P E do
13: selectedEndpoints(tp) Ð for each set in E(tp) include one element

14: return selectedEndpoints

Algorithm 2 Union reduction algorithm

Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
15: procedure unionReduction(tps, E)
16: triplesWithMultipleFragments Ð { tp : tp P tps ^ cardinality(E(tp)) ą 1 }
17: for each tp P triplesWithMultipleFragments do
18: commonSources Ð (

Ş

f : f P E(tp)) Ź get sources in all subsets in E(tp)
19: if commonSources ‰ H then
20: E(tp) Ð { commonSources }

Algorithm 1 proceeds in four main steps: I. Identify relevant fragments for
triple patterns, a Basic Graph Pattern (BGP) triple pattern can be contained in
one fragment or a union of fragments (lines 5-6). II. Localize relevant replicated
fragments on the endpoints, e.g., Figure 4 (line 7). III. Prune endpoints for the
unions (line 10). IV. Prune endpoints for the BGPs using a set covering heuristic
(line 11).

Next, we illustrate how Algorithm 1 works on our running query Q and data
consumer endpoints C1, C2, C3 from Figure 3.4

First, for each triple pattern, Fedra computes relevant fragments in R(tp),
and groups them if they provide the same relevant data. For tp1, Rptp1q Ñ
ttf6u, tf7uu. For tp4, as f5 Ď f4, f5 is safely removed at line 6, and Rptp4q Ñ
ttf4uu. Second, Fedra localizes fragments on endpoints in Eptpq. For tp1,
Eptp1q Ñ ttC1u, tC2uu. For tp4, Eptp4q Ñ ttC1, C3uu. Figure 4 shows the
execution plans encoded in R(tp) and E(tp). Triple patterns like tp1, with more
than one relevant fragment, represent unions in the execution plan.

Procedure unionReduction (cf. Algorithm 2) prunes non common end-
points, if possible, to access triple patterns from as few endpoints as possible.
In our running example, it is not possible because there is no common endpoint

4 As DBpedia is not included in the federation for processing Q, only fragments f6
and f7 are available to retrieve data for tp1 and the engine will not produce all the
answers that would be produced using DBpedia.



Algorithm 3 Basic graph pattern reduction algorithm

Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
21: procedure bgpReduction(tps, E)
22: triplesWithOneFragment Ð { tp : tp P tps ^ cardinality(E(tp)) = 1 }
23: (S, C) Ð minimal set covering instance using triplesWithOneFragmentCE
24: C’ Ð minimalSetCovering(S, C)
25: selected Ð get endpoints encoded by C’
26: for each tp P triplesWithOneFragment do
27: E(tp) Ð E(tp)

Ş

selected

’

’

’

Y

tp1tf6u tp1tf7u

tp2tf2u

tp3tf3u

tp4tf4u

’

’

’

Y

tp1tC1u tp1tC2u

tp2tC1,C2,C3u

tp3tC2,C3u

tp4tC1,C3u

Fig. 4: Execution plan encoded in data structures R (left) and E (right); multiple
subsets represent union of different fragment (ex. {f6}, {f7}); elements of the
subset represent alternative location of fragments (ex. {C1,C3}); bold sources
are the selected sources after set covering is used to reduce number of selected
sources

that replicates both f6 and f7. However, if, for example, f7 were also replicated
at C1, then only C1 would be selected to execute tp1.

Procedure bgpReduction (cf. Algorithm 3) transforms the join part of
Eptpq (cf. Figure 4) into a set covering problem (cf. line 23). Each triple pattern
is an element of the set to cover, e.g., tp2, tp3, tp4 correspond to s2, s3, s4 (cf.
Figure 5a). And for each endpoint in Eptpq, we include the subset of triple pat-
terns associated with that endpoint, e.g., for endpoint C1 we include the subset
{s2,s4} as relevant fragments tp2 and tp4 are replicated by C1 (cf. Figure 5b).
Line 24 relies on an existing heuristic [14] to find the minimum set covering.
In our example, it computes C’={{s2,s3,s4}}. Line 25 computes the selected
endpoints, in our example, selected={ C3 }.

Finally, (Algorithm 1, line 13) chooses among endpoints that provide the
same fragment and reduces data redundancy. For query Q, the whole algorithm
returns D2 of Table 1b.

Proposition 1. Algorithm 1 has a time complexity of Opn.m2q, with n the num-
ber of triple patterns in the query, m the number of fragments, k the number of
endpoints, l the number of basic graph patterns in the query, and m " k^ k " l
holds.

The upper bound given in Proposition 1 is unlikely to be reached, as it
requires for all fragments to be relevant for each of the triple patterns. In practice



(a) S instances

Triple Patterns (Tps) E(tp) S

tp2: ?film dbo : director ?director {{C1,C2,C3}} { s2

tp3: ?movie owl : sameAs ?film {{C2,C3}} s3

tp4: ?movie linkedmdb : genre ?genre {{C1,C3}} s4}

(b) C instance

{{s2,s4},{s2,s3},{s2,s3,s4}}

C1 C2 C3

Fig. 5: Set covering instances of S and C of BGP reduction Algorithm 3 for the
query Q (Figure 3)

Table 2: Dataset characteristics: version, number of different triples (# DT), and
predicates (# P)

Dataset Version date # DT # P
Diseasome 19/10/2012 72,445 19

Semantic Web Dog Food 08/11/2012 198,797 147
DBpedia Geo-coordinates 06/2012 1,900,004 4

LinkedMDB 18/05/2010 3,579,610 148
WatDiv1 104,532 86

WatDiv100 10,934,518 86

(e.g., experiments from Section 5), even for high number of fragments (ą 450),
the source selection time remains low (ă 2 secs).

Theorem 1 If all the RDF data accessible through the endpoints of a federation
are described as replicated fragments, Fedra source selection does not reduce
query engine answer completeness.

5 Experimental Study

The goal of the experimental study is to evaluate the effectiveness of Fedra. We
compare the performance of federated SPARQL queries using FedX, DAW+FedX,
Fedra+FedX, ANAPSID, DAW+ANAPSID, and Fedra+ANAPSID.

We expect to see that Fedra selects less sources than DAW, and transfers
less data from endpoints to the query engines.
Datasets and Queries: We use the real datasets: Diseasome, Semantic Web
Dog Food, LinkedMDB, and DBpedia Geo-coordinates. Further, we consider
two instances of the Waterloo SPARQL Diversity Test Suite (WatDiv) synthetic
dataset [2, 3] with 105 and 107 triples. Table 2 shows the characteristics of these
datasets. The datasets are hosted on local Linked Data Fragment (LDF) servers.

We generate 50,000 queries from 500 templates for the WatDiv federation.
We remove the queries that caused engines to abort execution, and queries that
returned zero results. For the real datasets, we generate more than 10,000 queries
using PATH and STAR shaped templates with two to eight triple patterns,
that are instantiated with random values from the datasets. We include the



DISTINCT modifier in all the queries, in order to make them susceptible to a
reduction in the set of selected sources without changing the query answer.

For each dataset, we setup a ten consumer SPARQL endpoint federation (ten
as in [20]). A consumer SPARQL endpoint is implemented using Jena Fuseki
1.1.15. Each consumer endpoint selects 100 random queries. Each triple pattern
of the query is executed as a SPARQL construct query with the LDF client6.
The results are stored locally if not present in at least three consumer endpoints
and a fragment definition is created. This replication factor of three was set to
avoid federations where all the fragments were replicated by all the endpoints.

In order to measure the number of transferred data, the federated query
engine accesses data consumer endpoints through a proxy.
Implementations: FedX 3.07 and ANAPSID8 have been modified to call Fe-
dra and DAW [20] source selection strategies during query processing. Thus,
each engine can use the selected sources to perform its own optimization strate-
gies. Fedra and DAW9 are implemented in both Java 1.7 and Python 2.7.3.
Thus, Fedra and DAW are integrated in FedX (Java) and ANAPSID (Python),
reducing the performance impact of including these new source selection strate-
gies. Proxies are implemented in Java 1.7. using the Apache HttpComponents
Client library 4.3.510. We used R11 to compute the Wilcoxon signed rank test [24].
Evaluation Metrics: i) Number of Selected Sources (NSS): is the sum of
the number of sources that have been selected per triple pattern. ii) Number
of Transferred Tuples (NTT): is the number of tuples transferred from all the
endpoints to the query engine during a query execution.

Further informations (implementation, results, setups details, tests p-values)
are available at https://sites.google.com/site/fedrasourceselection.

5.1 Data Redundancy Minimization

To measure the reduction of the number of selected sources, 100 queries were
randomly chosen, and the source selection was performed for these queries for
each federation using ANAPSID and FedX with and without Fedra or DAW.
For each query, the sum of the number of selected sources per triple pattern was
computed. Boxplots are used to present the results (Figure 6). Both Fedra and
DAW significantly reduce the number of selected sources, however, the reduction
achieved by Fedra is greater than the achieved by DAW.

To confirm it, we formulated the null hypothesis: “Fedra selects the same
number of sources as DAW does”, and performed a Wilcoxon signed rank test,
p-values were inferior or equal to 1.4e-05 for all federations and engines. These

5 http://jena.apache.org/, January 2015.
6 https://github.com/LinkedDataFragments, March 2015.
7 http://www.fluidops.com/fedx/, September 2014.
8 https://github.com/anapsid/anapsid, September 2014.
9 We had to implement DAW as its code is not available.

10 https://hc.apache.org/, October 2014.
11 http://www.r-project.org/
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Fig. 6: Number of Selected Sources for execution of ANAPSID (A) and FedX
(F) using Fedra (F+), DAW (D+), and the engine source selection

low p-values allow for rejecting the null hypothesis that DAW and Fedra reduc-
tion are similar, and accepting the alternative hypothesis that Fedra reduction
is greater than the one achieved by DAW. Fedra source selection strategy iden-
tifies the relevant fragments and endpoints that provide the same data. Only one
of them is actually selected; in consequence, a huge reduction on the number of
selected sources of up to 400% per query is achieved.

5.2 Data Transfer Minimization

To measure the reduction in the number of transferred tuples, queries were
executed using proxies that measure the number of transmitted tuples from
endpoints to the engines. Because queries that timed out have no significance
on number of transferred tuples, we removed all these queries from the study.12

Results (Figure 7) show that Fedra source selection strategy leads to executions

12 Up to six queries out of 100 queries did not successfully finish in 1,800 seconds,
details available at the web page.
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Fig. 7: Number of Transferred Tuples during execution with ANAPSID (A) and
FedX (F) using Fedra (F+), DAW (D+), and the engine source selection

with considerably less intermediate results in all the federations except in the
SWDF federation. In some queries of the SWDF federation, Fedra+FedX sends
exclusive groups that include BGPs with triple patterns that do not share a
variable, i.e., BGPs with Cartesian products; in presence of Cartesian product,
large intermediate results may be generated. Queries with Cartesian products
counters Fedra positive impact over other queries.

Despite that, globally Fedra shows an effective reduction of the number
of transferred tuples. To confirm it, we formulated the null hypothesis: “using
sources selected by Fedra leads to transfer the same number of tuples as using
sources selected by DAW”; and performed a Wilcoxon signed rank test, p-values
were inferior or equal to 0.002 for all federations and engines except SWDF
federation + FedX engine. In consequence, for all combinations of federation and
engines except SWDF+FedX, we can reject the null hypothesis DAW and Fedra
number of transferred tuples are similar and accept the alternative hypothesis
that Fedra achieves a greater reduction of the number of transferred tuples
than DAW. The reduction of the number of transferred tuples is mainly due to
Fedra source selection strategy aims to find opportunities to execute joins in



the endpoints, and mostly, it leads to a significant reduction of the intermediate
results size of up to four orders of magnitude.

6 Related Work

In distributed databases, data fragmentation and replication improve data avail-
ability and query performance [17]. Data fragmentation is tailored for represen-
tative queries; fragments are smartly allocated and replicated across servers for
balancing workload and reducing size of intermediate results. Linked Data [7] is
intrinsically a federation of autonomous participants where federated queries are
unknown to a single participant, and a tight coordination of data providers is dif-
ficult to achieve. Consequently, federated query engines cannot rely on properties
ensured by an allocation algorithm. SSP-FR challenge is to best use fragment
localities to reduce intermediate results in a given federation.

Recently, the Linked Data fragments approach (LDF) [22, 23] proposes to
improve Linked Data availability by moving query execution load from servers
to clients. A client is able to execute locally a restricted SPARQL query by down-
loading fragments required to execute the query from an LDF server through a
simple HTTP request. This strategy allows clients to cache fragments locally and
decreases the load on the LDF server. LDF chooses a clear tradeoff by shifting
query processing to clients, at the cost of slower query execution. In experiments,
we present how to federate several SPARQL consumer endpoints that replicate
fragments from LDF servers. Re-organizing fragments on data consumers opens
the opportunity to process federated queries even with LDF servers.

Col-graph [13] enables data consumers to materialize triple pattern fragments
and to expose them through SPARQL endpoints to improve data quality. A data
consumer can update her local fragments and share updates with data providers
and consumers. Col-graph proposes a coordination free protocol to maintain
the consistency of replicated fragments. Currently, Fedra can process federated
queries over Col-graph collaboration networks if the topology of Col-graph is
restricted to two layers without cycles. Fedra does not yet consider divergence
between fragments produced by concurrent editing, but it is addressed in [16].

HiBISCuS [19] source selection approach has been proposed to reduce the
number of selected sources. The reduction is achieved by annotating sources
with their authority URIs, and pruning sources that cannot have triples that
match any of the query triple patterns. HiBISCuS differs from our aim of both
selecting sources that are required to the answer, and avoiding the selection
of sources that only provide redundant replicated fragments. While not directly
related to replication, HiBISCuS index could be used in conjunction with Fedra
to perform join-aware source selection in presence of replicated fragments.

Recently, QBB [12] and DAW [20] propose duplicate-aware strategies for
selecting sources for federated query engines. Both approaches use sketches to
estimate the overlapping among sources. DAW uses a combination of Min-Wise
Independent Permutations (MIPs) [8], and triple selectivity information to esti-
mate the overlap between the results of different sources. Based on how many new



query results are expected to be found, sources that are below predefined bene-
fits, are discarded and not selected. Compared to DAW, Fedra does not require
to compute data summaries because Fedra relies on fragment definitions and
fragment containment to manage replication. Computing containments based on
fragment descriptions is less expensive than computing data summaries; more-
over, data updates are more frequent than fragment description updates. Fedra
minimizes the number of endpoints and data transfer and produces complete
query answers. Consequently, if DAW and Fedra could find the same number
of sources to execute a query, Fedra source selection considers the query basic
graph patterns to delegate join execution to the endpoints and reduce interme-
diate results size. This key feature cannot be achieved by DAW as it performs
source selection only at the triple pattern level.

7 Conclusions

In this paper, we illustrated how replicating fragments allow for data re-organization
from different data sources to better fit query needs of data consumers. Then,
we proposed a replication-aware federated query engine by extending state-of-
art federated query engine ANAPSID and FedX with Fedra, a source selection
strategy that approximates SSP-FR.

Fedra exploits fragment localities to reduce intermediate results. Experi-
mental results demonstrate that Fedra achieves significant reduction of inter-
mediate results while preserving query answer completeness.

This work opens several perspectives. First, we made the assumption that
replicated fragments are perfectly synchronized and cannot be updated. We can
leverage this assumption and manage the problem of federated query processing
with divergence [16].

Several variants of SSP-FR can also be developed. SSP-FR does not differ-
entiate between endpoints and the cost of accessing endpoints is considered the
same. Finally, SSP-FR and Fedra can be extended to solve the source selection
problem where the number of public endpoint accesses is minimized [16].
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