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Abstract. In this paper we propose a general purpose recursion opera-
tor to be added to SPARQL, formalize its syntax and develop algorithms
for evaluating it in practical scenarios. We also show how to implement
recursion as a plug-in on top of existing systems and test its performance
on several real world datasets.

1 Introduction

The Resource Description Framework (RDF) has emerged as the standard for
describing Semantic Web data and SPARQL as the main language for query-
ing RDF. After the initial proposal of SPARQL, and with more data becoming
available in the RDF format, users found use cases that required exploring the
structure of the data in more detail. In particular queries that are inherently re-
cursive, such as traversing paths of arbitrary length, have lately been in demand.
This was acknowledged by the W3C committee with the inclusion of property
paths in the latest SPARQL 1.1. standard [12], allowing queries to navigate paths
connecting two objects in an RDF graph.

However, in terms of expressive power, several authors have noted that prop-
erty paths fall short when trying to express a number of important properties
related to navigating RDF documents (cf. [6, 7, 22]), and that a more powerful
form of recursion needs to be added to SPARQL to address this issue. As a result
various extensions of property paths have been proposed (see e.g. [4,14,17,22]),
but to the best of our knowledge no attempt to add a general recursion operator
to the language has been made.

To illustrate the need for such an operator we consider the case of tracking
provenance of Wikipedia articles presented by Missier and Chen in [19]. They
use the PROV standard [24] to store information about how a certain article
was edited, whom was it edited by and what this change resulted in. Although
they store the data in a graph database, all PROV data is easily representable as
RDF using the PROV-O ontology [27]. The most common type of information
in this RDF graph tells us when an article A1 is a revision of an article A2. This
fact is represented by adding a triple of the form (A1, prov:wasRevisionOf, A2)
to the database. These revisions are associated to user’s edits with the predicate
prov:wasGeneratedBy and the edits can specify that they used a particular article
with a prov:used link. Finally, there is a triple (E, prov:wasAssociatedWith, U) if
the edit E was made by the user U . A snapshot of the data, showing provenance
of articles about Edinburgh, is depicted in Figure 1.
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Fig. 1. RDF database of Wikipedia traces. The abbreviation wAssocWith is used in-
stead of wasAssociatedWith and the prov:prefix is omitted from all the properties.

A natural query to ask in this context is the history of revisions that were
made by the same user: that is all pairs of articles (A,A′) such that A is linked
to A′ by a path of wasRevisionOf links and where all of the revisions along the
way were made by the same user. For instance, in Figure 1 we have that the
article 145 ”Edinburgh” is a revision of the article 72 ”Edinburgh” and all the
intermediate edits were made by User1. Such queries abound in version control
systems (for instance when tracking program development in svn or Git) and
can be used to detect which user introduced errors or bugs, when the data is
reliable, or to find the latest stable version of the data. Since these queries can
not be expressed with property paths [6, 17], nor by using standard SPARQL
functionalities (as provenance traces can contain links of arbitrary length), a
general purpose recursion operator seems like a natural addition to the language.

One reason why recursion in SPARQL was not considered previously could
be the fact that in order to compute recursive queries we need to apply the query
to the result of a previous computation. However, typical SPARQL queries do
not have this capability as their inputs are RDF graphs but their outputs are
mappings. This hinders the possibility of a fixed point recursion as the result of
a SPARQL query cannot be subsequently queried. One can avoid this by using
CONSTRUCT queries, which output RDF graphs, and indeed [15] has proposed
a way of defining a fixed point like extension for SPARQL based on this idea.

In this paper we extend the recursion operator of [15] to function over a
more widely used fragment of SPARQL and study how this operator can be
implemented in an efficient way on top of existing SPARQL engines. We begin
by showing what the general form of recursion looks like and how to evaluate it.
After arguing why full fledged recursion is unlikely to perform well on real world
data, we consider a restriction called linear recursion, which is widely used in
the relational context [1, 10], and show that it can express almost any use case
found in practice. Next, we develop an elegant algorithm for evaluating this class
of recursive queries and show how it can be implemented on top of an existing
SPARQL system. For our implementation we use Apache Jena framework [13]
and we implement recursive queries as an add-on to the ARQ SPARQL query



engine. We use Jena TDB version 2.12.1, which allows us not to worry about
queries whose intermediate results do not fit into main memory, thus resulting
in a highly reliable system. Lastly, we test how this implementation performs on
YAGO, LMBD and PROV records of Wikipedia revision history.1

Related work. The most common recursive functionality available for SPARQL
are property paths. These are either implemented fully [11, 13], or with some
limitations that ensure they can be efficiently evaluated [26]. Several extensions
of property paths have also been considered by the research community [3, 4,
14, 22] and although some of them can simulate certain recursive tasks, they
still fail to express arbitrary recursive queries. There were also some attempts to
allow recursion as a programming language construct [5,20], however they do not
view recursion as a part of the language, but as an outside add-on. Regarding
attempts to implement a full-fledged recursion as a part of SPARQL, both [25]
and [15] propose a syntax of the recursion operator similar to the one used here,
however, neither of the two describes specific algorithms for its execution, nor
do they analyse its performance, but instead focus on expressive power.

2 Preliminaries

RDF Graphs and Datasets. RDF graphs can be seen as edge-labeled graphs
where edge labels can be nodes themselves, and an RDF dataset is a collection of
RDF graphs. Formally, let I be an infinite set of IRIs2. An RDF triple is a tuple
(s, p, o) from I × I × I, where s is called the subject, p the predicate, and o the
object. An RDF graph is a finite set of RDF triples, and an RDF dataset is a set
{G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, where G0, . . . , Gn are RDF graphs and u1, . . . , un
are distinct IRIs. The graph G0 is called the default graph, and G1, . . . , Gn are
called named graphs with names u1, . . . , un, respectively. For a dataset D and
IRI u we define grD(u) = G if 〈u,G〉 ∈ D and grD(u) = ∅ otherwise. Given two
datasets D and D′ with default graphs G0 and G′0, we define the union D ∪D′
as the dataset with the default graph G0∪G′0 and grD∪D′(u) = grD(u)∪grD′(u)
for any IRI u. Union of datasets without default graphs is defined in the same
way, i.e., as if the default graph was empty.
SPARQL Syntax. We assume the familiarity with syntax and semantics of
SPARQL 1.1 query language. However, we do recall two particular features that
will be used: the GRAPH operator and the CONSTRUCT result form.

We assume all variables come from an infinite set V = {?x, ?y, . . .} of vari-
ables. The official syntax for SPARQL 1.1 queries considers several operators
such as OPTIONAL, UNION, FILTER, GRAPH and concatenation via the point
symbol ( . ) to construct what is known as graph patterns. Users then use a result
form such as SELECT or CONSTRUCT to form either result sets or RDF graphs
from the matchings of a graph pattern. We assume that readers are familiar

1 The implementation, test data and complete formulation of used queries can be
found in the online appendix available at http://web.ing.puc.cl/∼jreutter/Recsparql.html.

2 For clarity of presentation we do not include literals or blank nodes in our definitions.

http://web.ing.puc.cl/~jreutter/Recsparql.html
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Fig. 2. Graphs used for Example 1. The prefixes foaf: and prov: are omitted.

with graph patterns, we just note the syntax of the GRAPH operator: if P is
a graph pattern and g ∈ I ∪ V then (GRAPH g P ) is a graph pattern, called
a GRAPH-pattern. The expression (GRAPH g P ) allows us to determine which
graph from the dataset we will be matching the pattern P to. For instance if we
use an IRI in place of g the pattern will be matched against the named graph
with the corresponding name (if such a graph exists in the dataset), and in the
case that g is a variable, P will be matched against all the graphs in the dataset.

Although SELECT queries over graph patterns seem to be the most popular
use of SPARQL, as the results of such queries are not RDF graphs, we will use
the CONSTRUCT operator as a base for recursion. A SPARQL CONSTRUCT
query, or c-query for short, is an expression

CONSTRUCT H DS WHERE P,

where H is a set of triples from (I ∪V)× (I ∪V)× (I ∪V), called a template;
DS is a set of expressions of the form FROMNAMEDu1, . . . ,FROMNAMEDun,
with each ui ∈ I and i ≥ 0, called a dataset clause3; and P is a graph pattern.

The idea behind the CONSTRUCT operator is that the mappings matched
to the pattern P are used to construct an RDF graph according to the template
H. Since all the patterns in the template are triples we will end up with an RDF
graph as desired.

Example 1. LetG andG1 be the graphs in Figure 1 and Figure 2(a), respectively.
We want to query both graphs to obtain a new graph where each article is linked
to the email of a user who modified it. Assuming we have a dataset with default
graph G and that the IRI identifying G1 is http://db.ing.puc.cl/mail, this
would be achieved by the following SPARQL CONSTRUCT query q:

PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX prov: <http://xmlns.com/foaf/0.1>
CONSTRUCT {?article prov:wasAttributedTo ?mail}
FROM NAMED <http://db.ing.puc.cl/mail>
WHERE {

?article prov:wasGeneratedBy ?comment .
?comment prov:wasAssociatedWith ?usr .
GRAPH <http://db.ing.puc.cl/mail> {?usr foaf:mbox ?mail}}

3 For readability we assume the default graph as given.



The result ans(q, D) of evaluating q over D is depicted in Figure 2(b). The
construct FROM NAMED is used to specify that the dataset needs to include
the graph G1 associated with the IRI http://db.ing.puc.cl/mail.

SPARQL Semantics. The semantics of graph patterns is defined in terms of
mappings [12]; that is, partial functions from variables V to IRIs I. Given a
dataset D, and a graph G amongst the graphs of D, we denote the evaluation of
a graph pattern P over D with respect to G as JP KDG . The evaluation JP KD of a
pattern P over a dataset D with default graph G0 is JP KDG0

. The full definition

of JP KD and JP KDG can be found in the SPARQL standard, here we just note the
semantics of GRAPH-patterns, for which we need some notation.

The domain dom(µ) of a mapping µ is the set of variables on which µ is
defined. Two mappings µ1 and µ2 are compatible (written as µ1 ∼ µ2) if µ1(?x) =
µ2(?x) for all variables ?x in dom(µ1)∩dom(µ2). If µ1 ∼ µ2, then we write µ1∪µ2

for the mapping obtained by extending µ1 according to µ2 on all the variables in
dom(µ2) \ dom(µ1). Given two sets of mappings M1 and M2, the join and union
between M1 and M2 are defined respectively as follows:

M1 onM2 = {µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2 and µ1 ∼ µ2},
M1 ∪M2 = {µ | µ ∈M1 or µ ∈M2}

Let us now define the semantics of GRAPH-patterns. Consider a GRAPH-
pattern P = (GRAPH g P ′). Then

JP KDG =


JP ′KDgrD(g) if g ∈ I

⋃
u∈I

(
JP ′KDgrD(u) on {µg 7→u}

)
if g ∈ V

where µg 7→u is the mapping with domain {g} and where µg 7→u(g) = u.
Next we recall the semantics of SPARQL queries. Let q be a SPARQL query

and D a dataset. The answer ans(q, D) of q over D depends on the form of q:

– If q is a SELECT query, then ans(q, D) is the answer to q as defined in the
SPARQL standard [12].

– If q is a c-query q = CONSTRUCT H DS WHERE P , then let u1, . . . , un
be the IRIs in DS and G1, . . . , Gn the graphs associated to these IRIs; and
consider the dataset D′ = D ∪ {〈u1, G1〉, . . . , 〈un, Gn〉}. We define:

ans(q, D) = {µ(t) | µ ∈ JP KD
′
, t is a triple in H and µ is defined on vars(t)}.

3 Adding Recursion to SPARQL

The most basic example of a recursive query in RDF is reachability: given a re-
source x, compute all the resources that are reachable from x via a path of arbi-
trary length. These queries, amongst others, motivated the inclusion of property
paths into the recent SPARQL 1.1 standard [12]. However, as several authors sub-
sequently pointed out, property paths fall short when trying to express queries



that involve more complex ways of navigating RDF documents (cf. [4, 7, 8, 22])
and as a result several extensions have been brought forward to combat this
problem [2, 14, 17, 22]. Almost all of these extensions are also based on the idea
of computing paths between nodes in a recursive way, and thus share a num-
ber of practical problems with property paths. Most importantly, these queries
need to be implemented using algorithms that are not standard in SPARQL
databases, as they are based on automata-theoretic techniques, or clever ways
of doing Breadth-first search on the graph structure of RDF documents.

3.1 A Fixed Point Based Recursive Operator

We have decided to implement a different approach: a much more widespread
recursive operator that allows us compute the fixed point of a wide range of
SPARQL queries. Before proceeding with the formal definition we illustrate the
idea behind such queries by means of an example.

Example 2. Recall graph G from Figure 1. In the Introduction we made a case
for the need of a query that could compute all pairs of articles (A,A′) such
that A is linked to A′ by a path of wasRevisionOf links and where all of the
revisions along the way were made by the same user. We can compute this with
the following recursive query.

PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp AS {

CONSTRUCT {?newversion ?user ?oldversion}
FROM NAMED <http://db.ing.puc.cl/temp>
WHERE{{

?newversion prov:wasRevisionOf ?oldversion .
?newversion prov:wasGeneratedBy ?edit .
?edit prov:used ?oldversion .
?edit prov:wasAssociatedWith ?user}

UNION{
GRAPH <http://db.ing.puc.cl/temp>
{?newversion ?user ?intversion . ?intversion ?user ?oldversion}}}

}
SELECT ?newversion ?oldversion
FROM <http://db.ing.puc.cl/temp>
WHERE {?newversion ?user ?oldversion}

Let us explain how this query works. The second line specifies that a tempo-
rary graph named http://db.ing.puc.cl/temp is to be constructed according to
the query below which consists of a UNION of two subpatterns. The first pattern
does not use the temporary graph and it simply extracts all triples (A,U,B)
such that A was a revision of B and U is the user generating this revision. All
these triples should be added to the temporary graph.

Then comes the recursive part: if (A,U,B) and (B,U,C) are triples in the
temporary graph, then we also add (A,U,C) to the temporary graph. We con-
tinue iterating until a fixed point is reached, and finally we obtain a graph that
contains all the triples (A,U,A′) such that A is linked to A′ via a path of revi-
sions of arbitrary length but always generated by the same user U . Finally, the
SELECT query extracts all such pairs of articles from the constructed graph.



As hinted in the example, the following is the syntax for recursive queries. It
is based on the recursive operator that is part of SQL.

Definition 1 (Syntax of recursive queries). A recursive SPARQL query,
or just recursive query, is either a SPARQL query or an expression of the form

WITH RECURSIVE t AS {q1} q2, (1)

where t is an IRI from I, q1 is a c-query, and q2 is a recursive query. The set
of all recursive queries is denoted rec-SPARQL.

Note that in this definition q1 is allowed to use the temporary graph t, which
leads to recursive iterations. Furthermore, the query q2 could be recursive itself,
which allows us to compose recursive definitions. As usual with this type of
queries, semantics is given via a fixed point iteration.

Definition 2 (Semantics of recursive queries). Let q be a recursive query of
the form (1) and D an RDF dataset. If q is a non recursive query then ans(q, D)
is defined as usual. Otherwise the answer ans(q, D) is equal to ans(q2, DLFP),
where DLFP is the least fixed point of the sequence D0, D1, . . . with D0 = D and

Di+1 = D ∪ {〈t, ans(q1, Di)〉}, for i ≥ 0.

In other words, D1 is the union of D with a temporary graph t that cor-
responds to the evaluation of q1 over D, D2 is the union of D with a tempo-
rary graph t that corresponds to the evaluation of q1 over D1, and so on until
Di+1 = Di. Note that the temporary graph is completely rewritten after each
iteration. This definition suggests the following pseudocode for computing the
answers of a recursive query q of the form (1) over a dataset D4:

1. Initialize a temporary RDF graph named after the IRI t as GTemp = ∅.
2. While ans(q1, D ∪ {〈t, GTemp〉}) 6= GTemp do:

– Set GTemp = ans(q1, D ∪ {〈t, GTemp〉})
3. Output ans(q2, D ∪ {〈t, GTemp〉})

Obviously this definition only makes sense as long as such fixed point ex-
ists. From the Knaster-Tarski theorem [16] it easily follows that the fixed point
exists as long as queries used to define recursion are monotone. For the sake
of presentation, here we ensure this condition by disallowing explicit negation
(such as NOTEXISTS or MINUS) and optional matching from our c-queries (note
that under construct queries, this fragment is known to be equivalent to queries
defined by union of well designed graph patterns [15]). It was also shown in [15]
that the existence of a fixed point can be guaranteed even when q1 belongs to a
rather technical fragment that does allow a limited form of negation and optional
matching that extends beyond the use of unions of well designed patterns.

4 For readability we assume that t is not a named graph in D. If this is not the case
then the pseudocode needs to be modified to meet the definition above



3.2 Complexity Analysis

Recursive queries can use either the SELECT or the CONSTRUCT result form,
so there are two decision problems we need to analyze. For SELECT queries
we define the problem SelQueryAns, that receives as an input a recursive
query Q using the SELECT result form, a tuple ā of IRIs from I and a dataset
D, and asks whether ā is in ans(Q,D). For CONSTRUCT queries the problem
ConQueryAns receives a recursive query Q with a CONSTRUCT result form,
a triple (s, p, o) over I × I × I and a dataset D, and asks whether this triple
belongs to ans(Q,D).

Proposition 1. SelQueryAns is PSPACE-complete and ConQueryAns is
NP-complete. The complexity of SelQueryAns drops to Πp

2 if one only con-
siders SELECT queries given by unions of well-designed graph patterns.

Thus, at least from the point of view of computational complexity, our class
of recursive queries are not more complex than standard select queries [21] or
construct queries [15]. We also note that the complexity of similar recursive
queries in most data models is typically complete for exponential time; what
lowers our complexity is the fact that our temporary graphs are RDF graphs
themselves, instead of arbitrary sets of mappings or relations.

For databases it is also common to study the data complexity of the query
answering problem, that is, the same decision problems as above but considering
the input query to be fixed. We denote these problems as SelQueryAns(Q) and
ConQueryAns(Q), for select and construct queries, respectively. As we see, the
problem remains in polynomial time for data complexity, albeit in a higher class
than for non recursive queries (see again [21] or [15]).

Proposition 2. Both the problem SelQueryAns(Q) and the problem
ConQueryAns(Q) are PTIME-complete. They remain PTIME-hard even for
queries without negation or optional matching.

However, even if theoretically the problems have the same combined com-
plexity as queries without recursion and are polynomial in data complexity, any
implementation of the above algorithm is likely to run excessively slow due to
a high demand on computational resources (computing the temporary graph
over and over again) and would thus not be useful in practice. For this reason,
instead of implementing full-fledged recursion, we decided to support a frag-
ment of recursive queries based on what is commonly known as linear recursive
queries [1, 10]. This restriction is common when implementing recursive opera-
tors in other database languages, most notably in SQL [23], but also in graph
databases [8], as it offers a wider option of evaluation algorithms while maintain-
ing the ability of expressing almost any recursive query that one could come up
with in practice. For instance, as demonstrated in the following section, linear
recursion captures all the examples we have considered thus far and it can also
define any query that uses property paths. Furthermore, it can be implemented
in an efficient way on top of any existing SPARQL engine using a simple and
easy to understand algorithm. Next we formally define this fragment.



4 Realistic Recursion in SPARQL

The concept of linear recursion has become popular in the industry as a restric-
tion for fixed point operators in relational query languages, because it presents
a good tradeoff between the expressive power of recursive operators and their
practical applicability. Let Q be the query WITH RECURSIVE t AS {q1} q2,
where t is an IRI from I, q1 is a c-query, and q2 is a recursive query. We say that
Q is linear if for every dataset D, the answer ans(Q,D) of the query corresponds
to the least fixed point of the sequence given by

D0 = D, D−1 = ∅,
Di+1 = Di ∪ {〈t, ans(q1, (D ∪Di \Di−1))〉}.

In other words, a recursive query is linear if, in order to compute the i-th
iteration, we only need the original dataset plus the tuples that were added to
the temporary graph t in the previous iteration. Considering that the final size
of t might be comparable to the original dataset, linear queries save us from
evaluating the query several times over an ever increasing dataset.

Most of the recursive extensions proposed for SPARQL are linear: from prop-
erty paths [12] to nSPARQL [22], SPARQLeR [14] or Trial [17], and even our
example. Unfortunately it is undecidable to check if a recursive query is lin-
ear (under usual complexity-theoretic assumptions) [9], so one needs to impose
syntactic restrictions to enforce this condition. This is what we do next.

4.1 Linear recursive queries

Our queries are made from the union of a graph pattern that does not use the
temporary IRI, denoted as pbase and a graph pattern prec that does mention the
temporary IRI. Formally, a linear recursive query is an expression of the form

WITH RECURSIVE t AS {
CONSTRUCTH DS WHERE pbase UNION prec } qout (2)

with H and DS a construct template and dataset clause as usual, with pbase

and prec graph patterns such that only prec is allowed to mention the IRI
t and with qout a linear recursive query. We further require that the recur-
sive part prec mentions the temporary IRI only once. In order to describe
our algorithm, we shall abuse the notation and speak of qbase to denote
the query CONSTRUCTH DS WHERE pbase and qrec to denote the query
CONSTRUCTH DS WHERE prec, respectively.

This simple yet powerful syntax resembles the design choices taken in most
SQL commercial systems supporting recursion [23] and even graph databases [8].

For example, the query in example 2 is not linear, because the temporary
IRI is used twice in the pattern. Nevertheless, it can be restated as the following
query that uses one level of nesting:



PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp1 AS {

CONSTRUCT {?newversion ?user ?oldversion}
FROM NAMED <http://db.ing.puc.cl/temp1>
WHERE{

{?newversion prov:wasRevisionOf ?oldversion .
?newversion prov:wasGeneratedBy ?edit .
?edit prov:used ?oldversion .
?edit prov:wasAssociatedWith ?user}

UNION
{}}

}
WITH RECURSIVE http://db.ing.puc.cl/temp2 AS {

CONSTRUCT {?newversion ?user ?oldversion}
FROM NAMED <http://db.ing.puc.cl/temp1>
FROM NAMED <http://db.ing.puc.cl/temp2>
WHERE{

GRAPH <http://db.ing.puc.cl/temp1> {?newversion ?user ?oldversion}
UNION{

GRAPH <http://db.ing.puc.cl/temp1> {?newversion ?user ?intversion}.
GRAPH <http://db.ing.puc.cl/temp2> {?intversion ?user ?oldversion}}}

}
SELECT ?newversion ?oldversion
FROM <http://db.ing.puc.cl/temp>
WHERE {?newversion ?user ?oldversion}

We wrote the union in the first query for clarity, but in general either pbase or
prec can be empty. The idea of this query is to first dump all meaningful triples
from the graph into a new graph http://db.ing.puc.cl/temp1, and then use this
graph as a basis for computing the required reachability condition, that will be
dumped into a second temporary graph http://db.ing.puc.cl/temp25.

Note that these queries are indeed linear, and thus we can perform the incre-
mental evaluation that we have described above. The separation between base
and recursive query also allows us to keep track of changes made in the tempo-
rary graph without the need of computing the difference of two graphs. We have
decided to implement what is known as seminaive evaluation, although several
other alternatives have been proposed for the evaluation of these types of queries
(see [10] for a good survey). Our algorithm is presented in Algorithm 1.

So what have we gained? By looking at Algorithm 1 one realizes that in
each iteration we only evaluate the query over the union of the dataset and the
intermediate graph Gtemp, instead of the previous algorithm where one needed
the whole graph being constructed (in this case Gans). Furthermore, qbase is
evaluated only once, using qrec in the rest of the iterations. Considering that the
temporary graph may be large, and that no indexing scheme could be available,
this often results in a considerable speedup for query computation. As we see
next, the computational complexity is also reduced.

Complexity Analysis. We can find some explanation of why linear recursive
queries behave better in practice when revisiting the computational complexity
of the query answering problem, which shows a reduction in data complexity.

Theorem 1. If Q is a linear recursive query, SelQueryAns(Q) and
ConQueryAns(Q) are NLogSpace-complete.

5 One can show that in this case the nesting in this query can be avoided.



Algorithm 1 Computing the answer for linear recursive queries of the form (2)

Input: Query Q of the form (2), dataset D
Output: Evaluation ans(Q,D) of Q over D

1: Set Gtemp = ans(qbase, D) and Gans = Gtemp

2: Set size = |Gans|
3: loop
4: Set Gtemp = ans(qrec, D ∪ {(t, Gtemp)})
5: Set Gans = Gans ∪Gtemp

6: if size = |Gans| then
7: break
8: else
9: size = |Gans|

10: end if
11: end loop
12: return ans(qout, D ∪ {〈t, Gans〉})

5 Experimental Evaluation

Our implementation of linear recursive queries was carried out using the Apache
Jena framework [13] as an add-on to the ARQ SPARQL query engine. The
version used was Jena TDB 2.12.1 as it allows the user to run queries either in
main memory, or using disk storage when needed. As previously mentioned, since
the query evaluation algorithms we develop make use of the same operations that
already exist in current SPARQL engines, we can use those as a basis for the
recursive extension to SPARQL we propose. In fact, as we show by implementing
recursion on top of Jena, this capability can be added to an existing engine in
an elegant and non-intrusive way6.

We test our implementation using three different datasets. The first one is
Linked Movie Database (LMDB) [18], an RDF dataset containing information
about movies and actors7. The second dataset we use is a part of the YAGO
ontology [28] and consists of all the facts that hold between instances. For the
experiments the version from March 2015 was used. The last dataset is based on
Missier and Chen’s database of Wikipedia traces [19] we described previously.
We chose 3 of their datasets, but since they are very small we enlarge them by
taking disjoint copies of the same data until it reached the desired size. Since
these datasets contain only the traces and nothing else we also added 30% of
random unrelated triples to simulate the database containing other pieces of
information. We grew 4 different datasets out of the provenance traces, of 50,
100, 150 and 200 Mb of size approximately. We refer to these datasets as PROV1,
PROV2, PROV3 and PROV4, respectively8. All the experiments were run on a
MacBook Air with an Intel Core i5 1.3 GHz processor and 4GB of main memory.

6 The implementation we use is available at http://web.ing.puc.cl/∼jreutter/Recsparql.html.
7 We use the data dump available at http://queens.db.toronto.edu/∼oktie/linkedmdb/.
8 The datasets are available at http://web.ing.puc.cl/∼jreutter/Recsparql.html.

http://web.ing.puc.cl/~jreutter/Recsparql.html
http://queens.db.toronto.edu/~oktie/linkedmdb/
http://web.ing.puc.cl/~jreutter/Recsparql.html
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dataset

query
Q1 Q2 Q3

LMDB 37349 1172 14568

YAGO 25404 480 9416

(b) The number of output tuples

Dataset PROV1 PROV2 PROV3 PROV4

Time(sec) 12.3 22.8 33.8 46.5

No. tup. 220950 441900 667269 883800

(c) Query from Section 4 on PROV datasets

Fig. 3. Running times and the number of output tuples for the three datasets.

5.1 Query evaluation

Because of the novelty of our approach it was impossible to compare our times
against other implementations, or run standard benchmarks to test the per-
formance of our queries. Furthermore, while our formalism is similar to that of
recursive SQL, all of the RDF systems that we checked were either running RDF
natively, or running on top of a relational DBMS that did not support recursion
as mandated by the SQL standard. OpenLink Virtuoso does have a transitive
closure operator, but this operator can only compute transitivity when starting
in a given IRI. Our queries were more general than this, and thus we could not
compare them. For this reason we invented several queries that are very natural
over the considered datasets and tested their performance. As all property paths
can be expressed by linear recursive queries we will also test our implementation
against current SPARQL systems in the following subsection.

We start our round of experiments with movie-related queries over both
LMDB and YAGO. Since YAGO also contains information about movies, we
have the advantage of being able to test the same queries over different real
datasets (only the ontology differs). We use three different queries, all of them
similar to that of Example 2. The first query Q1 returns all the actors in the
database that have a finite Bacon number9, meaning that they co-starred in the
same movie with Kevin Bacon, or another actor with a finite Bacon number. A
similar notion, well known in mathematics, is the Erdős number. Note that Q1
is a property path query. To test recursive capabilities of our implementation we
use another two queries, Q2 and Q3, that apply various tests along the paths
computing the Bacon number. The query Q2 returns all actors with a finite
Bacon number such that all the collaborations were done in movies with the
same director. Finally the query Q3 tests if an actor is connected to Kevin
Bacon through movies where the director is also an actor (not necessarily in the
same movie). The structure of queries Q2 and Q3 is similar to the query from
Example 2 and cannot be expressed using property paths either. The results of
the evaluation can be found in Figure 3(a). As we can see the running times,

9 See http://en.wikipedia.org/wiki/Six Degrees of Kevin Bacon.

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
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Fig. 4. Evaluation time of QA and QB in our implementation is comparable to that of
Jena or Virtuoso. For PROV4 both queries reported more than 600 seconds in Virtuoso.

although high, are reasonable considering the size of the datasets and the number
of output tuples (Figure 3(b)).

The next round of experiments pushes our implementation to compute inher-
ently recursive queries. For this we use the query from Example 2 that finds all
pairs of Wikipedia articles whose revision history can be attributed to the same
user. As we implement linear recursion, the version of the query presented in Sec-
tion 4 is used. Figure 3(c) shows the running time of this query on the datasets
derived from Wikipedia traces described before; it illustrates that running times
are quite low when we take the number of computed tuples into consideration.

5.2 Comparison with Property Paths

Since to the best of our knowledge no SPARQL engine implements general recur-
sive queries, we cannot really compare the performance of our implementation
with the existing systems. The only form of recursion mandated by the latest
language standard are property paths, so in this section we test how our imple-
mentation stacks against popular systems when executing property paths.

Every property path query is easily expressible using linear recursion. How-
ever, it is not fair to compare our recursive implementation of property paths
to the one in current systems, as they specialize in executing this type of recur-
sive queries, while the recursive operator we introduced is aimed at expressing
a wide variety of queries that lie beyond the scope of property paths. For this
reason highly efficient systems like Virtuoso will run queries they are optimized
for much faster. For instance to run the query Q1 from Subsection 5.1 that com-
putes all actors with a finite Bacon number in LMDB or YAGO Virtuoso takes
less than 10 seconds, while our implementation takes much longer. Part of the
difference in running times could be attributed to the fact that in this particular
case our implementation runs queries on disc, while Virtuoso can perform them
in main memory, but the main detractor is the fact that Virtuoso is designed
to be efficient at property paths that are given a starting point, while recursive
queries are not since they can express more general queries.



To have a somewhat fair comparison we will use property path queries that
compute all pairs of IRIs connected by a specified property path. We use the
PROV datasets introduced above and in Figure 1 and test for the existence of
property paths wasRevisionOf∗ and (wasGeneratedBy/used)∗. We refer to these
queries as QA and QB .10 Figure 4 presents the time each of the queries takes on
the four PROV datasets of increasing size. We test the recursive implementation
of property paths against the one in Jena and Virtuoso. As we can see our
implementation is quite competitive with systems that specialize in property
paths when we need to compute the entire relation. We can also see that Jena
runs faster than Virtuoso in this case and we believe that this is due to the fact
that Jena implements property paths in a way that returns all pairs of nodes
that are connected by the specified query, while for Virtuoso we need to run the
query from every possible starting point.

5.3 Limiting the number of iterations

In practical scenarios users are often interested in running recursive queries only
for a predefined number of iterations. For instance, very long paths between
nodes are seldom of interest and in a many use cases we will be interested in
using property paths only up to depth four or five. For this reason we propose
the following syntax to restrict the depth of recursion to a user specified number:

WITH RECURSIVE t AS {
CONSTRUCTH DS WHERE pbase UNION prec

} MAXRECURSION k qout (3)

Here all the keywords are the same as when defining linear recursion, and k ≥ 1
is a natural number. The semantics of such queries is defined using Algorithm
1, where the loop between steps 4 and 12 is executed precisely k − 1 times.

It is straightforward to see that every query defined using recursion with
predefined number of iterations can be rewritten in SPARQL by explicitly spec-
ifying each step of the recursion and joining them using the union operator. The
question then is, why is specifying the recursion depth beneficial?

One apparent reason is that it makes queries much easier to write and under-
stand. The second reason we would like to argue for is that, when implemented
using Algorithm 1, recursive queries with a predetermined number of steps re-
sult in faster query evaluation times than evaluating an equivalent query with
lots of joins. The intuitive reason behind this is that computing qbase, although
expensive initially, acts as a sort of index to iterate upon, resulting in fast eval-
uation times as the number of iterations increases. On the other hand, for even
a moderately complex query using lots of joins, the execution plan will seldom
be optimal and will often resort to simply trying all the possible matchings to
the variables, thus recomputing the same information several times.

10 Note that in Virtuoso we need to specify the starting point of a property path. This
is done by extracting each node from a unique triple containing it.
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Fig. 5. Limiting the number of iterations for Q1, Q2 and Q3 over LMDB. Recursion
dominates manually written SPARQL joins when several iterations are required.

We substantiate this claim by running two rounds of experiments on LMDB
and YAGO using queries Q1,Q2 and Q3 from Subsection 5.1 and running them
for an increasing number of steps. In the first round we evaluate each of the
queries using Algorithm 1 and run it for a fixed number of steps until the algo-
rithm saturates. In the second round we use a SPARQL rewriting of a recursive
query where the depth of recursion is fixed and evaluate it in Jena.

Figure 5 shows the results over LMDB. The results for YAGO show the same
trend, so we do not include them. As we can see, the initial cost is much higher
if we are using recursive queries, however as the number of steps increases we
can see that they show much better performance and in fact, the queries that
use only SPARQL operators time out after a small number of iterations.

6 Conclusion

As illustrated by several use cases, there is a need for recursive functionalities
in SPARQL that go beyond the scope of property paths. To tackle this issue we
propose a recursive operator to be added to the language and show how it can
be implemented efficiently on top of existing SPARQL systems. We concentrated
on linear recursive queries which have been well established in SQL practice and
cover almost all interesting use cases and show how to implement them as an ex-
tension to Jena framework. Our tests show that, although very expressive, these
queries run in reasonable time even on a machine with limited computational
resources. We also include a command that allows to run recursive queries for
a limited number of steps and show that the proposed implementation outper-
forms equivalent queries specified using only SPARQL operators. We believe all
of this to be a good indicator of the usefulness of the recursion operator and why
it should be a potential candidate for inclusion in the next SPARQL standard.
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for Semantic Web Research Grant NC120004. We would like to thank Aidan
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