
SPARQL with Property Paths

Egor V. Kostylev1, Juan L. Reutter2, Miguel Romero3, and Domagoj Vrgoč2

1 University of Oxford
2 PUC Chile and Center for Semantic Web Research

3 University of Chile and Center for Semantic Web Research

Abstract. The original SPARQL proposal was often criticized for its
inability to navigate through the structure of RDF documents. For this
reason property paths were introduced in SPARQL 1.1, but up to date
there are no theoretical studies examining how their addition to the lan-
guage affects main computational tasks such as query evaluation, query
containment, and query subsumption. In this paper we tackle all of these
problems and show that although the addition of property paths has no
impact on query evaluation, they do make the containment and sub-
sumption problems substantially more difficult.

1 Introduction

Following the initial proposal for the SPARQL 1.0 query language [22] a lot of
work has been done by the theory community to study its basic properties. A
seminal paper by Pérez et al. [16] gave us a clean theoretical foundation for the
study of the language, and by now we understand very well the complexity of
query evaluation [12, 17], as well as the issues related to basic static analysis
tasks such as containment and equivalence [12,20,21].

However, with the growth of RDF data available on the Web, also came the
need for features not present in the original proposal. One such feature should
allow to navigate though RDF documents and discover how different resourses
are connected. This becomes apparent when considering applications such as
linked data where the local topology of the document often does not provide
sufficient information, and long chains have to be followed to obtain the desired
answer. For this reason the W3C included property paths in the specification of
SPARQL 1.1 [10], an extension of the original language with several important
features.

Intuitively, a property path searches through the RDF graph for a sequence
of IRIs that form a path conforming to an regular expression. For example,
to infer that one property is a subclass of another we could ask a query
(?x, subclass∗, ?y) and check if our pair is in the answer. Here the property
path is given by the regular expression subclass∗, which specifies that we can
traverse an arbitrary number of subclass property links in order to reach ?y
from ?x.

Although some work has been done on SPARQL with different forms of nav-
igation [1–3,8,9,14,18,24], little is known about the language that has property

paths as specified in the latest standard [10]. Therefore, our goal is to study
theoretical aspects of SPARQL with this functionality. In particular, in this pa-
per we focus on the fundamental problems of query evaluation, containment,
and subsumption. The first one is key for understanding the properties of any
query language, while the other two are of fundamental importance in query
optimization, ontological reasoning, and managing incomplete information.

So far, these problems have been studied for fragments of SPARQL that
allow only basic operators such as AND, UNION, SELECT, and OPTIONAL (ab-
breviated as OPT in this paper) [9, 12, 20]. It is therefore interesting to see how
property paths mix with the previous results on core SPARQL. A natural ap-
proach here would be to use techniques from the field of graph databases. After
all, RDF triples closely resemble edges in a labelled graph, and property paths
are similar to regular path queries [5]. However, we will show that this cannot be
done directly, as not only RDF data model is richer than usual graphs [13], but
also the SPARQL 1.1 standard allows for negation in property paths, which is
known to make things more difficult [11, 15]. Another challenge is the presence
of the OPT operator (which is not usually included in graph database query
languages) and the way it interacts with property paths. We will show that
techniques for SPARQL without property paths [12, 20] cannot be straightfor-
wardly adapted to deal with the general language. To this end, we develop new
techniques that merge the approaches of [5,20] and use them to obtain matching
complexity bounds for the considered problems.

We begin in Section 3 with a formalisation of property paths according to the
latest specification [10]. We also pinpoint the differences between the resulting
language and known formalisms, and discuss the difficulties they impose on pos-
sible adaptations of known techniques for solving the considered problems. Then,
in Section 4, we study evaluation, containment, and subsumption for SPARQL
with property paths that do not allow for optional matching. In particular, using
techniques from automata theory we show that in this case property paths do
not increase the complexity of evaluation, but have a significant effect on con-
tainment and subsumption. Finally, in Section 5 we study the full language, with
both property paths and optional matching. Blending standard SPARQL and
graph databases techniques we can show that adding OPT usually makes evalu-
ation more difficult, but almost always leaves the complexity of the optimisation
problems intact.

2 Preliminaries

RDF Graphs Let I, L, and B be countably infinite disjoint sets of IRIs, literals,
and blank nodes, respectively. The set of RDF terms T is I ∪ L ∪ B. An RDF
triple is a triple (s, p, o) from T × I × T, where s is called subject, p predicate,
and o object. An (RDF) graph is a finite set of RDF triples.

SPARQL Syntax SPARQL is the standard pattern-matching language for
querying RDF graphs. In what follows we build on the formalisation of the lan-

guage proposed in [17]; in particular, we consider two-placed OPT and adopt set
semantics of queries, leaving three-placed optional and the multiplicities of the
answers as defined in the standard for future work. For now we also concentrate
on the core fragment and introduce property paths in a separate section.

Formally, let V be an infinite set {?x, ?y, . . .} of variables, disjoint from T.
SPARQL (graph) patterns are defined recursively as follows:

1. a triple in (I∪L∪V)× (I∪V)× (I∪L∪V) is a pattern, called triple pattern;
2. if P1 and P2 are patterns, then P1 ANDP2, P1 OPTP2, and P1 UNIONP2 are

patterns, called AND-, OPT-, and UNION-patterns, respectively.

The set of all variables appearing in a pattern P is denoted by var(P).
In this paper we do not consider FILTER operator, leaving it for future work.

It is also known that arbitrary graph patterns (even without FILTER) may have
counter-intuitive behaviour and bad computational properties [17]. That is why
we concentrate on a restricted class of graph patterns, which is widely used,
has expected behaviour and better computational properties [17, 20]—namely,
well designed patterns [17,19]. Formally, a graph pattern P is well designed if it
is UNION-free and each of its OPT-subpatterns P1 OPT P2 is such that all the
variables in var(P2) appearing in P outside this subpattern are also in var(P1).

The class of well designed patterns, denoted AO-SPARQL, is the main class
for this paper. However, we also consider its restrictions and extensions. In par-
ticular, the subclass of AO-SPARQL that allows only for AND-subpatterns
is denoted A-SPARQL. It corresponds to conjunctive queries without non-
distinguished (existential) variables. These classes extend with UNION operator
on the top level to AOU-SPARQL and AU-SPARQL: for example, the patterns
in the former have the form P1 UNION . . . UNION P` where all the Pi are in
AO-SPARQL.

Finally, we also consider the SELECT operator which acts as a result modifier
of a graph pattern. In particular, SELECT queries are expressions of the form

SELECTX WHERE P,

with P a graph pattern and distinguished (projection) variables X a subset of
var(P). A class of SELECT queries with patterns from a class introduced above
is denoted by adding S to the prefix; for example, AOS-SPARQL stands for
SELECT queries with well designed patterns. Note that patterns can be seen as
queries with all the variables distinguished, so we use “query” as a general term.

SPARQL Semantics The semantics of graph patterns is defined in terms of
mappings, that is, partial functions from variables V to RDF terms T. The
domain dom(µ) of a mapping µ is the set of variables on which µ is defined. Two
mappings µ1 and µ2 are compatible (written as µ1 ∼ µ2) if µ1(?x) = µ2(?x)
for all variables ?x that are in both dom(µ1) and dom(µ2). If µ1 ∼ µ2, then
µ1 ∪ µ2 denotes the mapping obtained by extending µ1 according to µ2 on all
the variables in dom(µ2) \ dom(µ1).

Given two sets of mappings M1 and M2, the join, union, and difference of
M1 and M2 are defined respectively as follows:

M1 1M2 = {µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2, and µ1 ∼ µ2},
M1 ∪M2 = {µ | µ ∈M1 or µ ∈M2},
M1 \M2 = {µ1 | µ1 ∈M1 and there is no µ2 ∈M2 such that µ1 ∼ µ2}.

Based on this, the left outer join of M1 and M2 is defined as

M1 1M2 = (M1 1M2) ∪ (M1 \M2).

For a triple pattern P and a mapping µ we write µ(P) for the triple obtained
from P by replacing each variable ?x ∈ dom(µ) by µ(?x). The evaluation JP KG
of a graph pattern P over a graph G is defined as follows:

1. if P is a triple pattern, then JP KG = {µ : var(P)→ T | µ(P) ∈ G},
2. if P = P1 AND P2, then JP KG = JP1KG 1 JP2KG,
3. if P = P1 OPT P2, then JP KG = JP1KG 1 JP2KG,
4. if P = P1 UNION P2, then JP KG = JP1KG ∪ JP2KG.

Finally, the evaluation JQKG of a query Q of the form SELECTX WHERE P is
the set of all projections µ|X of mappings µ from JP KG to X, where the projection
of µ to X is the mapping that coincides with µ on X and undefined elsewhere.

3 Property Paths in SPARQL

Property paths are a new feature introduced in SPARQL 1.1 [10] to allow for
navigational querying over RDF graphs. Intuitively, a property path views an
RDF document as a labelled graph where the predicate IRI in each triple acts
as an edge label. It then extracts each pair of nodes connected by a path such
that the word formed by the edge labels along this path belongs to the lan-
guage of the expression specifying the property path. Property paths resemble
regular path queries studied in graph databases [4], but these formalisms have
important differences both in syntax and semantics. In this section we define the
new SPARQL operator according to the specification and compare the resulting
extension with known query languages.

3.1 Property Path Expressions

We start with the definition of property path expressions, following the
SPARQL 1.1 specification [10]. We use adopted syntax in spirit of graph database
languages, but note that the standard sometimes uses different symbols for op-
erators; for example, inverse paths e− and alternative paths e1 + e2 from our
definition are denoted there by ˆe and e1 | e2, respectively.

Definition 1. Property path expressions are defined by the grammar

e := a | e− | e1 · e2 | e1 + e2 | e+ | e∗ | e? | !{a1, . . . , ak} | !{a−1 , . . . , a
−
k },

where a, a1, . . . , ak are IRIs in I. Expressions of the last two forms (i.e., starting
with !) are called negated property sets.

x y

z

v w

a

b

c

a a

b

Fig. 1. Example RDF graph G

When dealing with singleton negated property sets brackets may be omit-
ted: for example, !a is a shortcut for !{a}. Besides the forms in Definition 1 the
SPARQL 1.1 specification includes a third version of the negated property sets
!{a1, . . . , ak, b−1 , . . . , b

−
` }, which allows for negating both normal and inverted

IRIs at the same time. We however do not include this extra form in our formal-
isation, since it is equivalent to the expression !{a1, . . . , ak}+ !{b−1 , . . . , b

−
` }.

The set of all property path expressions is denoted by PP. Their normative
semantics is given in the following definition.

Definition 2. The evaluation JeKG of a property path expression e over an RDF
graph G is a set of pairs of RDF terms from T defined as follows:

JaKG = {(s, o) | (s, a, o) ∈ G},
Je−KG = {(s, o) | (o, s) ∈ JeKG},

Je1 · e2KG = Je1KG ◦ Je2KG,
Je1 + e2KG = Je1KG ∪ Je2KG,

Je+KG =
⋃
i≥1Je

iKG,
Je∗KG = Je+KG ∪ {(a, a) | a is a term in G},
Je?KG = JeKG ∪ {(a, a) | a is a term in G},

J!{a1, . . . , ak}KG = {(s, o) | ∃a with (s, a, o) ∈ G and a /∈ {a1, . . . , ak}},
J!{a−1 , . . . , a

−
k }KG = {(s, o) | (o, s) ∈ J!{a1, . . . , ak}KG},

where ◦ is the usual composition of binary relations, and ei is the concatenation
e · . . . · e of i copies of e.

Intuitively, two IRIs are connected by a negated property set if they are
subject and object of a triple in the graph whose predicate is not mentioned
in the set under negation. Note that, according to Definition 2, the expression
!{a−1 , . . . , a

−
k } retrieves the inverse of !{a1, . . . , ak}, and thus it respects the di-

rection: a negated inverted IRI returns all pairs of nodes connected by some
other inverted IRI. To exemplify, consider the RDF graph G from Figure 1. We
have that J!aKG = {(y, x), (y, z), (v, w)} as we can find a forward looking predi-
cate different from a for any of these pairs. Note that there is an a-labelled edge
between v and w, but since there is also a b-labelled one, the pair (v, w) is in
the answer. On the other hand, J!a−KG = {(x, y), (z, y), (w, v)}, because we can
traverse a backward looking predicate (either b− or c−) between these pairs.

Note that !{a1, . . . , ak} is not equivalent to !a1+. . .+ !ak. To see this consider
again the graph G from Figure 1. We have J!aKG = {(y, x), (y, z), (v, w)} and
J!bKG = {(x, y), (y, z), (y, v), (v, w)}, while J!{a, b}KG = {(y, z)}.

Property path expressions resemble navigational query languages for graph
databases. Indeed, syntactically, property paths without negated property sets
are nothing more than the well studied 2-way regular path queries (2RPQs) [5],
the default core navigational language for graph databases, with the only minor
exception that the empty 2RPQ ε is not expressible as a property path expres-
sion (see [4] for a good survey on graph database query languages). However,
negated property sets are a unique feature which has not been properly stud-
ied before in the SPARQL literature, as far as we are aware (safe [24], where
nSPARQL¬ language is introduced, which provides much more expressive navi-
gational facilities than property paths, but no evaluation or optimisation bounds
are given, and [1, 2], where PSPARQL is studied, whose navigational operator
is incomparable with property paths). Note that if we were working with graph
databases, where predicates come from a finite alphabet Σ, then one could eas-
ily replace !a with a disjunction of all other symbols in Σ. But since we are
dealing with RDF graphs, which have predicates from the infinite set of IRIs I,
we cannot treat this feature in such a naive way. Nevertheless, we can still show
that deciding whether a pair of IRIs belongs to the evaluation of a property
path expression e over an RDF graph G is as easy as computing the answers of
2RPQs—the problem is in low polynomial time. The idea of the algorithm is in
the same spirit as the ideas of standard algorithms for evaluation of 2RPQs [4,7]
and their extensions [1, 2, 18]: we construct from G and e two nondeterministic
finite automata Ae and AG of special type that can account for negated property
sets, and then check that the cross product of these two automata is nonempty.

Proposition 1. For every property path e and RDF graph G the problem of
deciding whether a pair (a, b) of terms belongs to JeKG can be solved in time
O(|G| · |e|).

3.2 Queries with Property Paths

SPARQL 1.1 incorporates property path expressions on the atomic level by
means of triples with RDF terms or variables on the subject and object po-
sitions, but property path expressions on the predicate position. Formally, we
have the following definition.

Definition 3. A property path pattern is a triple in (I∪L∪V)×PP×(I∪L∪V).

Note, however, that property path patterns are incomparable with triple
patterns, because they allow for property path expressions in predicate positions,
but forbid variables in these positions. We use the notion of atomic patterns as
a general term for triple and property path patterns.

The classes of queries introduced in Section 2 incorporate navigational func-
tionality by allowing arbitrary atomic patterns as graph patterns, along with
complex operator patterns. In our notation this is reflected by letter P in names
of the classes. For example AOUSP-SPARQL is the maximal language consid-
ered in this paper, which allows for AND, OPT, UNION, SELECT operators and

arbitrary atomic patterns. Remember, however, that all the patterns we con-
sider are (unions of) well designed patterns, assuming that for fragments with
property paths this notion stays exactly the same as in Section 2.

To complete the formalization of SPARQL with property paths we need to
define the semantics.

Definition 4. For a property path pattern P = (u, e, v) and an RDF graph G
the evaluation JP KG of P over G is the set of mappings

{µ : var(P)→ T | (µ(u), µ(v)) ∈ JeKG},

assuming that mappings µ extends to terms t from T as identity, that is, µ(t) = t.

Having this definition at hand, the semantics of graph patterns and queries
with property paths is exactly the same as in Section 2.

Since property paths resemble 2RPQs, SPARQL with property paths has a
lot in common with other graph database languages, such as conjunctive 2RPQs
(C2RPQs), which extend 2RPQs with conjunction and existential quantification,
and unions of C2RPQs (UC2RPQs), further extending 2RPQs with union on
the top level (see again [4]). However, there are some important differences.

First, SPARQL with property paths allows for both property path patterns
and triple patterns, which may have a variable in the middle position. This is
not possible in (U)C2RPQs.

Second, the UNION operator in SPARQL behaves differently from union in
classical databases and UC2RPQs. In particular, it is not null-rejecting, that
is, the patterns constituting a union may have different sets of variables, and,
hence, the mappings in the evaluation may have different domains, even if the
query is OPT-free.

The third and most important difference is the presence of optional matching
in SPARQL. This unique SPARQL feature requires complete rethinking of many
standard results in database theory, and, as we will see, results on property paths
are not an exception.

In the rest of the paper we study properties of the SPARQL classes with
property paths. It is convenient to start in the next section with classes without
OPT and then continue in Section 5 with the ones incorporating this operator.

4 Properties of Classes without Optional Matching

The fundamental properties of query languages considered in this paper are
complexity of query answering and optimisation problems, such as containment
and subsumption. We begin the study of these properties with OPT-free classes
of SPARQL with property paths.

4.1 Query Evaluation

We start with the most important fundamental problem for query languages—
query evaluation. According to [23], this problem is formalised for any class
X -SPARQL defined in the previous sections as follows.

Evaluation(X -SPARQL)
Input: An RDF graph G, X -SPARQL query Q, and mapping µ.

Question: Does µ belong to JQKG?

As discussed above, the class AUS-SPARQL without optional matching and
property paths is just the class of unions of conjunctive queries, for which the
evaluation problem is well known to be NP-complete. Without selection, that is,
without non-distinguished variables, it is in PTIME. Based upon Proposition 1,
we can show that adding property paths to OPT-free SPARQL does not affect the
complexity of query evaluation, same as adding 2RPQs to conjunctive queries.

Proposition 2. The following holds:

– Evaluation(X -SPARQL) is NP-complete for X ∈ {ASP,AUSP};
– Evaluation(AUP-SPARQL) is in PTIME.

4.2 Query Containment

In this section we consider query containment for OPT-free SPARQL with prop-
erty paths. This is one of the fundamental problems for static analysis of query
languages [23], which asks whether all the answers of one query are among an-
swers of another for any input RDF graph.

Formally, a query Q1 is contained in a query Q2, denoted by Q1 ⊆ Q2, if for
every RDF graph G we have JQ1KG ⊆ JQ2KG. Then, the corresponding decision
problem is defined as follows for classes of queries X1-SPARQL and X2-SPARQL.

Containment(X1-SPARQL,X2-SPARQL)
Input: Queries Q1 from X1-SPARQL and Q2 from X2-SPARQL.

Question: Is Q1 ⊆ Q2?

It is known that containment of 2RPQs and C2RPQs without projection is
PSPACE-complete [6], and EXPSPACE-complete if projection is allowed. Given
the resemblance of 2RPQs and property paths, it is natural to ask whether the
techniques of [6] and [5] can be reused in the context of SPARQL with property
paths. It turns out that, to some extend, this is indeed the case, but the nature
of triples in RDF graphs and the presence of negated property sets oblige us to
rework most of their definitions, including the key one—“canonical database”, in
order to adapt them to the SPARQL scenario. The following examples illustrate
the main challenges that arise and ideas how to overcome them.

Example 1. Consider ASP-SPARQL queries

Q1 = SELECT ?x, ?y, ?z WHERE (?x, !a, ?y) AND (?x, !a, ?z),
Q2 = SELECT ?x, ?y, ?z WHERE (?x, ?v, ?y) AND (?x, ?v, ?z).

One can easily check that Q1 is not contained in Q2. However, a counterexample
for this fact requires a graph in which images of ?x and ?y are connected by a
different property than those of ?x and ?z. It means that we cannot treat !a
just as a usual RDF term, but we need to allow each occurrence of a negated
property set to be witnessed by a fresh term.

Example 2. Consider now ASP-SPARQL queries

Q3 = SELECT ?x, ?y WHERE (?x, ?v, ?y),
Q4 = SELECT ?x, ?y WHERE (?x, !a, ?y).

Again, Q3 is not contained in Q4. This time, however, counterexamples are
formed by triples of the form (b, a, c), for IRIs b and c. Thus, we cannot just
construct a canonical graph by freezing every variable in the query on the left of
the possible containment, because counterexamples may need to be formed by
mapping some of these variables to negated IRIs from the query on the right.

Taking into account these ideas, we can rework the machinery in [5] so that
the notion of canonical graphs is adapted to SPARQL queries with full property
paths, including the limited negation. Then, using automata techniques, we can
prove results similar to [5] for containment of OPT-free SPARQL with property
paths—it is EXPSPACE-complete in general and PSPACE-complete if the right-
hand side query is a pattern without projection.

Theorem 1. The following holds:

– Containment(X1-SPARQL,X2-SPARQL) is EXPSPACE-complete for
X1 ∈ {AP, . . . ,AUSP} and X2 ∈ {ASP,AUSP};

– Containment(X1-SPARQL,X2-SPARQL) is PSPACE-complete for X1 ∈
{AP, . . . ,AUSP} and X2 ∈ {AP,AUP}.

To conclude, we note that in the first case the space used depends expo-
nentially only on the size of each of the union-free subpatterns and not on the
number of these subpatterns. This property is crucial for the results of Section 5.3
(in particular, Theorem 3).

4.3 Query Subsumption

Query containment is a way of specifying that one query is more general than
another, which is common across different query formalisms. However, the unique
SPARQL feature is the ability to return partial answers, and Pérez et al. argued
in [17] that it is more natural to compare SPARQL queries for subsumption,
that is, to check whether for any answer to one query there is a more elaborate
answer to the other one on any input RDF graph.

Formally, a mapping µ is subsumed by a mapping µ′, denoted by µ v µ′,
if dom(µ) is contained in dom(µ′) and µ ∼ µ′. A query Q1 is subsumed by a
query Q2 (written as Q1 v Q2) if for every RDF graph G it holds that for each
µ1 ∈ JQ1KG there exists µ2 ∈ JQ2KG such that µ1 v µ2. The corresponding
decision problem for classes of queries X1-SPARQL and X2-SPARQL is defined
as follows.

Subsumption(X1-SPARQL,X2-SPARQL)
Input: Queries Q1 from X1-SPARQL and Q2 from X2-SPARQL.

Question: Is Q1 v Q2?

Although the notion of subsumption becomes more natural when dealing
with the OPT operator, for completion we still study this problem for the case
of OPT-free SPARQL queries with property paths. We also find it interesting
that the complexity of subsumption ends up being higher than the complexity
of containment for some of the classes.

Before stating the results on subsumption, we give some intuition behind
them and compare subsumption with containment. For a query Q1 from ASP-
SPARQL to be subsumed by a query Q2 from the same class it is necessary that
the set of distinguished variables of Q1 is a subset of the distinguished variables
of Q2. Moreover, Q1 v Q2 if and only if for every RDF graph G and mapping
µ1 in JQ1KG one can obtain µ1 from some µ2 in JQ2KG by projecting out the
distinguished variables of Q2 that are not distinguished in Q1. The first obvious
consequence of this observation is that in this case the subsumption problem
for ASP-SPARQL is not more difficult than the containment problem, because
Q1 v Q2 if and only if Q1 is contained in SELECT X WHERE P2, with X the set
of output variables of Q1 and P2 the pattern of Q2. However, rather surprisingly,
the limited projection inherent to the subsumption problem is enough to make
the problem EXPSPACE-hard even for patterns from AP-SPARQL, which do
not have non distinguished variables.

Proposition 3. The problem Subsumption(X1-SPARQL,X2-SPARQL) is
EXPSPACE-complete for X1,X2 ∈ {AP, . . . ,AUSP}.

5 Properties of Classes with Optional Matching

In this section we consider query evaluation, containment, and subsumption for
SPARQL classes that allow for both the OPT operator and property paths. In ad-
dition to the difficulties from the previous section, such as negated property sets
and non-null-rejecting union, we have to deal with mixture of optional matching
and property paths. To overcome these difficulties we develop non-trivial compo-
sitions of the usual SPARQL and graph databases techniques, as well as invent
new ones.

5.1 Query Evaluation

Complexity bounds for query evaluation of SPARQL classes with (well designed)
optional matching that do not use property paths are by now well under-
stood [12, 17]. In particular, the problem is coNP-complete for graph patterns,
that is, queries with all the variables distinguished, and jumps to Σp

2 if arbitrary
SELECT clauses are allowed. In this section we show that adding property paths
to the set of allowed operators preserves these bounds. To this end, we develop
a characterisation similar to the one in [12], by adapting the notions of OPT
normal form and pattern trees to work with property path patterns.

A graph pattern P is in OPT normal form if no OPT operators appear in
AND-subpatterns of P . It was shown in [17, Proposition 4.11] that every well

designed graph pattern without property path patterns can be transformed to an
equivalent pattern in OPT normal form in polynomial time by means of a set of
rewriting rules that “push” AND inside OPT (recall that well designed patterns
have neither UNION nor SELECT clauses). It is straightforward to check that
these rules are correctly applicable to graph patterns that allow for property
paths, so in what follows we assume that all patterns are in OPT normal form
(in particular, AND-patterns are just AND combinations of atomic patterns).

Each graph pattern P in OPT normal form can be intuitively represented
as a pattern tree Tree(P), that is, a rooted tree with nodes labelled by sets of
atomic (i.e., triple and property path) patterns which is recursively constructed
as follows:

– if P is an AND-pattern then Tree(P) consists of a single node labelled with
the set of all atomic patterns in this AND-pattern;

– if P = P1 OPT P2 then Tree(P) is obtained from Tree(P1) and Tree(P2) by
adding an edge form the root of the former to the root of the latter.

In other words, the labels of nodes in pattern trees correspond to conjunctions
of atomic patterns, while edges represent the structure of optional matching. For
a node n in a pattern tree, and(n) denotes the AND pattern consisting of the
atomic patterns in its label, and var(n) denotes the set of all variables in these
patterns; these notations propagate to sets of nodes and subtrees of pattern trees.
In fact, we are interested only in subtrees containing the root of the original tree,
so in what follows we assume this restriction without mentioning it explicitly. A
node in a pattern tree is a child of a subtree T if it is not in T but its parent is.

It is important to note that pattern trees are unordered, so different pat-
terns may have the same representation. However, we disregard this syntacti-
cal mismatch, because such patterns are always equivalent. This follows from
the fact that for well designed patterns ((P1 OPT P2) OPT P3) is equivalent to
((P1 OPT P3) OPT P2) (this was stated in [16] and proved in [12] for patterns
without property paths, but a generalisation to our case is straightforward).

Example 3. Consider the pattern

((((?x, a+ b, ?y) AND (?x, c∗, ?y)) OPT (?x, a, ?z)) OPT (?x, b, ?w)).

The tree representing this pattern is as follows.

{(?x, a+ b, ?y), (?x, c∗, ?y)}

{(?x, a, ?z)} {(?x, b, ?w)}

Another interesting property of pattern trees is that for each variable the
set of all nodes with this variable in the labels is always connected. This is a
vivid illustration of the well-designedness property of patterns. Moreover, every
pattern tree Tree(P) (and hence every well-designed pattern) can be normalised
to an equivalent tree T ′ (called NR normal form [12]) such that var(n′) 6⊆ var(n)
for every edge (n, n′) in T ′, that is, such that every node introduces a new

variable in comparison to the parent of this node. Transformation to NR normal
form can be done in polynomial time by adding the label of every node without
new variables to the labels of its children and then removing all such nodes from
the tree. In what follows we assume all well designed patterns and corresponding
pattern trees to be in NR normal form.

An intuitive coNP algorithm for evaluation of well designed patterns with
property paths works in the same way as the one described in [12] for the case
without property paths. It consists in the following two steps. Since the input
pattern is in NR normal form, the input mapping µ uniquely defines a subtree
T ′µ such that dom(µ) = var(T ′µ). So, on the first step we need to check for the
input graph that µ(and(T ′µ)) ⊆ G, that is, all the patterns in the subtree under
µ indeed materialise in the input graph G. This check can be done in polynomial
time, because by Proposition 1 property paths have tractable evaluation. On the
second and more difficult step we need to guarantee that µ cannot be consistently
extended to the variables of any child of T ′µ in T ′. This can be done in coNP by
guessing a counterexample (i.e., an extension) for one of these children.

Same as for patterns without property paths, this algorithm can be extended
to union and selection in a straightforward way. In the latter case the complexity
jumps one level of the polynomial hierarchy, because we have to guess the val-
ues of non-distinguished variables. Combining these results with matching lower
bounds for the classes without property paths [12, 17] we obtain the following
proposition.

Proposition 4. The following holds:

– Evaluation(X -SPARQL) is Σp
2 -complete for X ∈ {AOSP,AUOSP};

– Evaluation(X -SPARQL) is coNP-complete for X ∈ {AOP,AUOP}.

The focus of this paper is SPARQL with well designed optional matching, and
we leave a comprehensive study of SPARQL with property paths and arbitrary
nesting of other operators considered in this paper for future work. However, as
a final remark in this section, we note that it is not difficult to show PSPACE-
completeness of evaluation for this class, that is, the same complexity as for any
subclass of this class that allows for arbitrary optional matching [21].

5.2 Query Containment

Now we move to the containment problem of SPARQL with property paths.
As shown in [20], without them the problem Containment(X1-SPARQL,X2-
SPARQL) is NP-complete for any X1-SPARQL that allows for optional match-
ing and for X2-SPARQL = AO-SPARQL, that is for the class of well designed
patterns. If X2-SPARQL also allows for union, then the complexity becomes
Πp

2 -complete (again, for the full range of X1-SPARQL), and the problem is un-
decidable if X2-SPARQL allows for arbitrary selection. Thus we focus on the
most general case where we can hope for decidability: checking whether a query
in AOUSP-SPARQL is contained in a query in AOUP-SPARQL. Our main
result is that this problem is also decidable, specifically, EXPSPACE-complete.

As we saw in the previous subsection, the techniques developed in [12, 17]
for checking evaluation can be extended to work with property paths with rela-
tively little effort. Later we will see that similar strategy works for subsumption,
because it can be reduced to checking containment of OPT-free queries, which
is extensible to classes with property paths. However, the situation is different
for containment. It is not clear how to apply the known techniques (e.g., the one
in [20, Theorem 3.7]) to state the problem in terms of containment of OPT-free
queries. To overcome this, we develop a new characterization of containment that
reduces the problem to a weaker form of containment between OPT-free queries.
Then we take advantage of the automata techniques developed in Section 4.

In what follows we first present our new characterisation for containment for
queries without property paths (which we believe is of independent interest) and
then adapt it to the general case. We start with a definition.

Definition 5. Let

Q1 = SELECTX WHERE P and Q2 = P 1 UNION . . . UNION P k

be queries from AOSP-SPARQL and AOUP-SPARQL respectively, with P , P i

well designed patterns. A good extension E of Q1 over Q2 is an AND pattern

and(Tree(P)) AND and(n1) AND . . . AND and(nm),

where m ≤ k and every nj is obtained from a child of a subtree Tj of one of
Tree(P 1), . . ., Tree(P k) with var(Tj) = X by renaming all variables not in X to
fresh ones. The support sup(E) of E is the set of all the subtrees Tj.

Our new characterisation of containment for the case without property paths
is based on the following lemma.

Lemma 1. Let

Q1 = SELECTX WHERE P and Q2 = P 1 UNION . . . UNION P k

be a AOUS-SPARQL and AOU-SPARQL queries respectively. Then Q1 6⊆ Q2

if and only if there is a good extension E over Q2 of some AOS-SPARQL query
with a pattern P ∗ such that Tree(P ∗) is a subtree of one of the trees representing
components of P and distinguished variables X∗ = X ∩ var(P ∗) that satisfies the
following conditions:

(C1) for each child n of Tree(P ∗), there is no homomorphism h from and(n) to
E such that h(?x) =?x for all variables ?x in var(n) ∩ var(E), and

(C2) for each subtree T of one of Tree(P 1), . . . ,Tree(P k) with var(T) = X∗ that
is not in sup(E) there is no homomorphism h from and(T) to E such that
h(?x) =?x, for all variables ?x in var(T) ∩ var(E).

The intuition behind Lemma 1 is as follows. A good extension E satisfying
conditions (C1) and (C2) gives us a witness for non-containment: it suffices to
consider the “frozen RDF graph” G of E obtained by replacing each variable

?x by a fresh IRI ax and the mapping µ with µ(?x) = ax, for all ?x ∈ X∗ and
undefined for other ?x. Then conditions (C1) and (C2) are a convenient way of
stating that µ ∈ JQ1KG and µ /∈ JQ2KG.

Observe that the size of a good extension is polynomial in the size of Q1 and
Q2. Thus, Lemma 1 gives us an alternative proof for Πp

2 -membership of contain-
ment of a query in a pattern if both of them do not use property paths. Indeed
to find a counterexample for containment we need to guess a good extension and
then call for a coNP oracle to check conditions (C1) and (C2).

To extend the characterisation of Lemma 1 to queries with property paths
we need the following auxiliary notation. We write P1 � P2 for patterns P1

and P2 if for each RDF graph G and mapping µ1 ∈ JP1KG there is a mapping
µ2 ∈ JP2KG such that µ1 ∼ µ2.

We analyse the complexity of containment in the presence of property paths
by means of the following generalised statement.

Lemma 2. Let

Q1 = SELECTX WHERE P and Q2 = P 1 UNION . . . UNION P k

be a AOUSP-SPARQL and AOUP-SPARQL queries respectively. Then Q1 6⊆
Q2 if and only if there is a good extension E over Q2 of some AOSP-SPARQL
query with a pattern P ∗ such that Tree(P ∗) is a subtree of one of the trees
representing components of P and distinguished variables X∗ = X ∩ var(P ∗)
that satisfies E 6� (N UNION S), where

(C1′) N is a union of all and(n) for children n of Tree(P ∗), and
(C2′) S is a union of all and(T) for subtrees T of trees Tree(P 1), . . . ,Tree(P k)

with var(T) = X∗ that are not in sup(E).

Using techniques developed in Section 4.2, the condition E 6� (N UNION S)
can be checked in EXPSPACE. This gives us an EXPSPACE upper bound for
containment of AOUSP-SPARQL and AOUP-SPARQL queries. Moreover, the
matching lower bound can be derived from Proposition 3.

Theorem 2. The problem Containment(X1-SPARQL,X2-SPARQL) is
EXPSPACE-complete for X1 ∈ {AOP, . . . ,AOUSP} and X2 ∈ {AOP,AOUP}.

5.3 Query Subsumption

The last problem we study in this paper is subsumption of SPARQL queries with
property paths. Letelier et al. [12, 20] proved Πp

2 -completeness of this problem
for all the classes with optional matching but without property paths, even if
arbitrary selection is allowed. Moreover, they provide the following very simple
and useful characterisation for the subsumption of AO-SPARQL patterns: a
pattern P1 is subsumed by a pattern P2 if and only if for every subtree T ′1 of
Tree(P1) there is a subtree T ′2 of Tree(P2) such that var(T ′1) ⊆ var(T ′2) and there
is a homomorphism from and(T ′2) to and(T ′1) that is the identity on var(T ′1). This
idea extends to patterns with union in the usual way—the subsumption holds if

and only if for every component of the first pattern there is a subsuming one in
the second.

How can this characterisation be extended to deal with property paths? The
immediate idea is just to replace homomorphism with containment of corre-
sponding OPT-free queries. However, in the presence of union this simple strat-
egy does not always work. Indeed, the pattern (?x, (a + b), ?y) is subsumed by
the pattern (?x, a, ?y)UNION (?x, b, ?y) (in fact, they are equivalent), but not in
any of its components.

As we see, the problem is the disjunction introduced by property paths,
and our characterisation needs to account for this. By doing so we arrive at
the following characterisation. A pattern P1 is subsumed by a pattern P2 if
and only if for every subtree T ′1 of Tree(P1) the AND-pattern and(T ′1) is sub-
sumed in the union of all AND-patterns and(T ′2), where T ′2 ranges over subtrees
of Tree(P2) with var(T ′1) ⊆ var(T ′2). With this characterisation we avoid deal-
ing with optional matching, and can thus solve subsumption by the techniques
introduced in the previous section. As an illustration, we can use this character-
isation in the example above to show that Q1 v Q2, by choosing the same query
(?x, a, ?y) UNION (?x, b, ?y). By extending this characterisation for all queries
with arbitrary selection we obtain our last theorem.

Theorem 3. The problem Subsumption(X1-SPARQL,X2-SPARQL) is
EXPSPACE-complete for X1,X2 ∈ {AOP, . . . ,AOUSP}.

6 Conclusions

At a first glance it was not clear whether one could combine techniques from
graph databases and the Semantic Web to study SPARQL with property paths.
Indeed, on the one hand, graph database techniques failed short for such study,
because RDF data allows for predicates from an infinite alphabet and property
paths may have negation. On the other hand, even if the machinery developed to
study SPARQL without property paths proved to be inspirational for this work,
the characterisations provided in the literature were too specific to be used in
the general case. In this paper we have shown how these two classes of techniques
can be generalised and combined to reason about SPARQL queries that allow
for property path patterns. In particular, we developed algorithms for evaluating
such queries and deciding their containment and subsumption. Finally we would
like to note that many of the upped bounds obtained here (e.g., all EXPSPACE
and Πp

2 bounds) match the lower bounds for more restricted classes of queries.
As for future work, the main direction we would like to tackle is the addition

of the FILTER operator to the language, since so far this feature of SPARQL has
not been comprehensively considered in the literature. We have some preliminary
results showing that the techniques from Section 5.2 can be extended to work in
this setting. Another interesting direction is to study the fragments with property
paths and full power of optional matching, that is, that allow for three-placed
and not well designed OPTIONAL.

References

1. F. Alkhateeb. Querying RDF(S) with regular expressions. Ph.D. thesis, Université
Joseph Fourier, Grenoble, 2008.

2. F. Alkhateeb, J. F. Baget, J. Euzenat. Extending SPARQL with regular expression
patterns (for querying RDF). J. Web Sem., 7(2): 57–73, 2009.

3. M. Arenas, S. Conca, J. Pérez. Counting beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the standard. In WWW’12, pp. 629–638.

4. P. Barceló Baeza. Querying graph databases. In PODS’13, pp. 175–188.

5. D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. Containment of
conjunctive regular path queries with inverse. In KR’00, pp. 176–185.

6. D. Calvanese, G. De Giacomo, M. Lenzerini, M. Y. Vardi. Reasoning on regular
path queries. ACM SIGMOD Record, 32(4):83–92, 2003.

7. M. Consens, A. Mendelzon. GraphLog: a visual formalism for real life recursion.
In PODS’90, pp. 404–416.

8. M. W. Chekol. Static Analysis of Semantic Web Queries. Ph.D. thesis, Université
de Grenoble, 2012.

9. M. W. Chekol, J. Euzenat, P. Genevès, N. Layäıda. SPARQL Query Containment
under RDFS Entailment Regime. In IJCAR’12.

10. SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-query.

11. E. V. Kostylev, J. L. Reutter, D. Vrgoč. Containment of Data Graph Queries. In
ICDT’14, pp. 131–142.

12. A. Letelier, J. Pérez, R. Pichler and S. Skritek. Static analysis and optimization
of semantic web queries. In ACM TODS, 38(4), 2013.

13. L. Libkin, J. L. Reutter and D. Vrgoč. Trial for RDF: adapting graph query
languages for RDF data. In PODS’13, pp. 201–212.

14. K. Losemann, W. Martens. The Complexity of Regular Expressions and Property
Paths in SPARQL. In ACM TODS, 38(4), 2013.

15. F. Neven, T. Schwentick, V. Vianu. Finite state machines for strings over infinite
alphabets. ACM TOCL 5(3): 403–435 (2004).

16. J. Pérez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL. In
ISWC’06, pp. 30–43.

17. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM TODS, 34(3), 2009.

18. J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A navigational language for RDF.
J. Web Sem., 8(4): 255–270, 2010.

19. F. Picalausa, S. Vansummeren. What are real SPARQL queries like? In SWIM’11.

20. R. Pichler, S. Skritek. Containment and equivalence of well-designed SPARQL. In
PODS’14, pp. 39–50.

21. M. Schmidt, M. Meier, G. Lausen. Foundations of SPARQL query optimization.
In ICDT’10, pp. 4–33.

22. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
Recommendation 15 January 2008, http://www.w3.org/TR/rdf-sparql-query/.

23. M. Y. Vardi. The Complexity of Relational Query Languages. In STOC, 1982.

24. X. Zhang and J. Van den Bussche. On the Power of SPARQL in Expressing
Navigational Queries. In The Computer Journal, 2014.

